A dual method for constrained optimization design in magnetostatic problems

1991 ◽  
Vol 27 (5) ◽  
pp. 4136-4141 ◽  
Author(s):  
R.R. Saldanha ◽  
J.L. Coulomb ◽  
A. Foggia ◽  
J.C. Sabonnadiere
IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 28404-28416 ◽  
Author(s):  
Wenxing Zhu ◽  
Zhengshan Dong ◽  
Yuanlong Yu ◽  
Jianli Chen

Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 250 ◽  
Author(s):  
Umesh Balande ◽  
Deepti Shrimankar

Firefly-Algorithm (FA) is an eminent nature-inspired swarm-based technique for solving numerous real world global optimization problems. This paper presents an overview of the constraint handling techniques. It also includes a hybrid algorithm, namely the Stochastic Ranking with Improved Firefly Algorithm (SRIFA) for solving constrained real-world engineering optimization problems. The stochastic ranking approach is broadly used to maintain balance between penalty and fitness functions. FA is extensively used due to its faster convergence than other metaheuristic algorithms. The basic FA is modified by incorporating opposite-based learning and random-scale factor to improve the diversity and performance. Furthermore, SRIFA uses feasibility based rules to maintain balance between penalty and objective functions. SRIFA is experimented to optimize 24 CEC 2006 standard functions and five well-known engineering constrained-optimization design problems from the literature to evaluate and analyze the effectiveness of SRIFA. It can be seen that the overall computational results of SRIFA are better than those of the basic FA. Statistical outcomes of the SRIFA are significantly superior compared to the other evolutionary algorithms and engineering design problems in its performance, quality and efficiency.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 22408-22416
Author(s):  
Zhen Zhang ◽  
Hongcai Chen ◽  
Yang Yu ◽  
Fan Jiang ◽  
Qingsha S. Cheng

2013 ◽  
Vol 325-326 ◽  
pp. 1485-1488
Author(s):  
Shi Ming Hao ◽  
Li Zhi Cheng

The classical harmony search algorithm (HSA) can only be used to solve the unconstrained optimization problems with continuous decision variables. Therefore, the classical HSA is not suitable for solving an engineering optimization problem with mixed discrete variables. In order to improve the classical HSA, an engineering method for dealing with mixed discrete decision variables is introduced and an exact non-differentiable penalty function is used to transform the constrained optimization design model into an unconstrained mathematical model. Based on above improvements, a program of improved HSA is designed and it can be used for solving the constrained optimization design problems with continuous variables, integer variables and non-equidistant discrete variables. Finally, an optimization design example of single-stage cylindrical-gear reducer with mixed-discrete variables is given. The example shows that the designed program runs steadily and the proposed method is effective in engineering design.


2019 ◽  
Vol 142 (5) ◽  
Author(s):  
Tianzeng Tao ◽  
Guozhong Zhao ◽  
Shanhong Ren

Abstract To solve challenging optimization problems with time-consuming objective and constraints, a novel efficient Kriging-based constrained optimization (EKCO) algorithm is proposed in this paper. The EKCO mainly consists of three sampling phases. In phase I of EKCO, considering the significance of constraints, feasible region is constructed via employing a feasible region sampling (FRS) criterion. The FRS criterion can avoid the local clustering phenomenon of sample points. Therefore, phase I is also a global sampling process for the objective function in the feasible region. However, the objective function may be higher-order nonlinear than constraints. In phase II, by maximizing the prediction variance of the surrogate objective, more accurate objective function in the feasible region can be obtained. After global sampling, to accelerate the convergence of EKCO, an objective local sampling criterion is introduced in phase III. The verification of the EKCO algorithm is examined on 18 benchmark problems by several recently published surrogate-based optimization algorithms. The results indicate that the sampling efficiency of EKCO is higher than or comparable with that of the recently published algorithms while maintaining the high accuracy of the optimal solution, and the adaptive ability of the proposed algorithm also be validated. To verify the ability of EKCO to solve practical engineering problems, an optimization design problem of aeronautical structure is presented. The result indicates EKCO can find a better feasible design than the initial design with limited sample points, which demonstrates practicality of EKCO.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Lin Han ◽  
Geng Liu ◽  
Xiaohui Yang ◽  
Bing Han

In the minimal weight/volume design of multistage gear drives, both the dimensional and layout parameters of gear pairs have a direct effect on the design result. A new optimization model that can carry out both dimensional- and layout-constrained optimization design for any number of stages of cylindrical gear drives simultaneously is proposed. The optimization design of a three-stage cylindrical gear drive is conducted as a design example to test the application of this model. In the attempt to solve this constrained optimization problem using an elitist genetic algorithm (GA), different constraint handling methods have a crucial effect on the optimal results. Thus, the results obtained by applying three typical constraint handling methods in GA one by one are analyzed and compared to figure out which one performs the best and find the optimal solution. Moreover, a more precise projection center distance (PCD) method to calculate the degree of interference constraint violation is proposed and compared with the usually used (0, 1) method. The results show that the proposed PCD method is a better one.


Sign in / Sign up

Export Citation Format

Share Document