Enhancement of head-disk interface durability by use of diamond-like carbon overcoats on the slider's rails

1994 ◽  
Vol 30 (2) ◽  
pp. 369-374 ◽  
Author(s):  
D.B. Bogy ◽  
Xiaohan Yun ◽  
B.J. Knapp
1999 ◽  
Vol 594 ◽  
Author(s):  
C. S. Bhatia ◽  
C.-Y. Chen ◽  
W. Fong ◽  
D. B. Bogy

AbstractTribochemical studies of the effect of lubricant bonding on the tribology of the head/disk interface (HDI) were conducted using hydrogenated (CHx) carbon disk samples coated with perfluoropolyether ZDOL lubricant. The studies involved drag tests with uncoated and carboncoated Al2O3-TiC sliders and also thermal desorption experiments in an ultra-high vacuum (UHV) tribochamber. We observed that a larger mobile lubricant portion significantly enhances the wear durability of the (head/disk interface) HDI by providing a reservoir to constantly replenish the lubricant displaced in the wear track during drag tests. In the thermal desorption tests we observed two distinct temperatures of desorption. The mobile ZDOL layer is desorbed at the lower thermal desorption temperature and the residual bonded ZDOL layer is desorbed at the higher thermal desorption temperature. We also observed that the hydrogen evolution from CHx overcoats initiates lubricant catalytic decomposition with uncoated Al2O3/TiC sliders, forming CF3 (69) and C2F5 (119). The generation of Hydroflouric acid (HF) during thermal desorption experiments provides the formation mechanism of Lewis acid, which is the necessary component for catalytic reaction causing Z-DOL lube degradation.


Author(s):  
Mingwu Bai ◽  
Stephen M. Hsu

Tribological performance of the head-disk interface will have significant impact on the performance and durability of the hard disk drive. A high-speed contact test method has been developed for the purpose of evaluating nanometer-thick lubricant film/carbon overcoats materials on hard-disk surfaces. Four different thickness overcoats were used in high speed contact experiments. High speed contact force was calculated based on the calibration of acoustic emission signal by proposed ball dropping tests. Acoustic emission analysis, frequency spectrum analysis, and surface morphology imaging were used to analyze the deformation and fracture at high speed contacted area. The availability of an experimental technique enables effective screening of different material chemistries and lubricant combinations to improve the level of protection for hard disk technology.


1998 ◽  
Vol 120 (4) ◽  
pp. 795-799 ◽  
Author(s):  
C. Singh Bhatia ◽  
S. Anders ◽  
I. G. Brown ◽  
K. Bobb ◽  
R. Hsiao ◽  
...  

Cathodic arc deposition forms ultra-thin amorphous hard carbon films of high sp3 content, high hardness, and low coefficient of friction. These properties make it of great interest for head/disk interface application, in particular for contact recording. In many cases, the tribological properties of the head disk interface could be improved by factors up to ten by applying cathodic arc overcoats to the slider or disk surface. This paper reviews the results of cathodic arc ultra-thin (2–10 nm) carbon overcoats for head/disk interface tribological applications.


Author(s):  
Youfeng Zhang ◽  
Yeoungchin Yoon ◽  
Shaomin Xiong

Abstract The key features for Heat Assisted Magnetic Recording (HAMR) head-disk interface (HDI) are higher temperature, rougher media grains and harder disk properties. As a result of these features, it is critical for HDI especially the head to remain wear resistance, contamination robustness and chemical stability as much as possible compared to the current Perpendicular Magnetic Recording (PMR) technology. This work summarizes new tribology challenges and strategies at the HDI arisen from the HAMR technology, in terms of disk carbon overcoats, lubricants, head overcoats and mechanical design.


1999 ◽  
Vol 593 ◽  
Author(s):  
C.S. Bhatia ◽  
C.-Y. Chen ◽  
W. Fong ◽  
D.B. Bogy

ABSTRACTTribochemical studies of the effect of lubricant bonding on the tribology of the head/disk interface (HDI) were conducted using hydrogenated (CHx) carbon disk samples coated with perfluoropolyether ZDOL lubricant. The studies involved drag tests with uncoated and carbon-coated A1203-TiC sliders and also thermal desorption experiments in an ultra-high vacuum (UHV) tribochamber. We observed that a larger mobile lubricant portion significantly enhances the wear durability of the (head/disk interface) HDI by providing a reservoir to constantly replenish the lubricant displaced in the wear track during drag tests. In the thermal desorption tests we observed two distinct temperatures of desorption. The mobile ZDOL layer is desorbed at the lower thermal desorption temperature and the residual bonded ZDOL layer is desorbed at the higher thermal desorption temperature. We also observed that the hydrogen evolution from CHx overcoats initiates lubricant catalytic decomposition with uncoated A1203/TiC sliders, forming CF3 (69) and C2F5(119). The generation of Hydroflouric acid (HF) during thermal desorption experiments provides the formation mechanism of Lewis acid, which is the necessary component for catalytic reaction causing Z-DOL lube degradation


1995 ◽  
Vol 31 (6) ◽  
pp. 2919-2921 ◽  
Author(s):  
Run-Han Wang ◽  
S.W. Meeks ◽  
R.L. White ◽  
W.E. Weresin

Sign in / Sign up

Export Citation Format

Share Document