head disk interface
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 9)

H-INDEX

26
(FIVE YEARS 1)

2020 ◽  
Vol 10 (17) ◽  
pp. 5899
Author(s):  
Yuyan Zhang ◽  
Ling Jiang ◽  
Weixu Yang ◽  
Chenbo Ma ◽  
Qiuping Yu

Adhesion is the key factor influencing the failure of the hard disk drive operating under ultra-low flying height. In order to mitigate the negative effects of adhesion at the head–disk interface (HDI) and promote further development of the thermal flying height control (TFC) technology, an adhesive contact model based on the Lifshitz theory accounting for the thermal protrusion (TP) geometry of TFC slider, the layered structures of the head and disk, and the operation states of the slider was proposed to investigate the static contact characteristics at the HDI. The simulation results demonstrated the undesirable unstable regions during the transitions between different operation states and the necessity of applying TFC technology. The reduction in the head–media spacing (HMS) was found to be achieved by properly increasing the TP height, decreasing the thickness of the lubricant layer or the thickness of the diamond–like carbon (DLC) layer during the flying state or the TP–lube contact state. At the TP–DLC contact regime, the attractive interaction was stronger than other states, and the strong repulsive interaction made the HMS difficult to be further reduced through the increase in the TP height or the decrease in the lubricant thickness.


Author(s):  
Abhishek Srivastava ◽  
Rahul Rai ◽  
Karthik Venkatesh ◽  
Bernhard Knigge

Abstract One of the issues in thermal asperity (TA) detection using an embedded contact sensor (ECS) is the degradation caused to the read/write elements of the head while interacting with the TA. We propose a method to reduce such head-disk interaction (HDI) during TA detection and classification by flying higher at low thermal fly-height control (TFC) power, which minimizes the interaction of the TA with the head. The key idea is to scan the head at higher fly height, but with higher ECS bias voltage. Initial experiments have shown that the TA count follows a negative cubic relationship with the backoff at various bias levels, and that it follows a square relationship with bias at various backoff levels. Using a sample set, the calibration curves i.e. the golden relationship between these parameters can be established. Using these, one can start the TA detection at the highest backoff and high ECS bias, and start to estimate the nominal TA count. By mapping out these TAs and ensuring the head does not fly over them again to prevent HDI, the fly height can then be lowered, and the rest of the TA cluster can be scanned. Following this method iteratively, the entire TA cluster can be mapped out with minimal interaction with the head. Although this method entails an increase in the test time to detect and map all TAs, compared to detecting them with TFC being on, this can help improve the reliability of the drive by protecting the sensitive read/write elements especially for energy assisted recording from HDI.


Author(s):  
Rahul Rai ◽  
Abhishek Srivastava ◽  
Bernhard Knigge ◽  
Aravind N. Murthy

Abstract Recent growth in the cloud storage industry has created a massive demand for higher capacity hard disk drives (HDD). A sub-nanometer head media spacing (HMS) remains the most critical pre-requisite to achieve the areal density needed to deliver the next generation of HDD products. Designing a robust head-disk interface (HDI) with small physical clearance requires the understanding of slider dynamics, especially when the head flies in proximity to the disk surface. In this paper, we describe a method using the magnetic read-back signal to characterize the head fly-height modulations as it undergoes a transition from a free-flying state to soft contact with the disk surface. A technique based on the magnetic fly-height sensitivity is introduced for the identification of the transition plane that corresponds to the onset of the touchdown process. Additionally, the proposed magnetic spacing based meteorology is used to study the effect of the air bearing stiffness on the magnitude of the slider vibrations induced by intermittent head-disk interactions. The information about the minimum spacing while maintaining the stable flying conditions can help in reducing the head-disk interaction risk that can enable a low clearance interface.


2020 ◽  
Vol 56 (5) ◽  
pp. 1-7
Author(s):  
Tan D. Trinh ◽  
Christoph Schade ◽  
Michael Johnson ◽  
Frank E. Talke

Author(s):  
Youfeng Zhang ◽  
Yeoungchin Yoon ◽  
Shaomin Xiong

Abstract The key features for Heat Assisted Magnetic Recording (HAMR) head-disk interface (HDI) are higher temperature, rougher media grains and harder disk properties. As a result of these features, it is critical for HDI especially the head to remain wear resistance, contamination robustness and chemical stability as much as possible compared to the current Perpendicular Magnetic Recording (PMR) technology. This work summarizes new tribology challenges and strategies at the HDI arisen from the HAMR technology, in terms of disk carbon overcoats, lubricants, head overcoats and mechanical design.


Author(s):  
Rahul Rai ◽  
Puneet Bhargava ◽  
Bernhard Knigge ◽  
Aravind N. Murthy

Abstract Growth in the demand for higher capacity hard disk drives (HDD) has pushed the requirement for head-media spacing (HMS) to sub-nanometer levels. The drop in operational clearance makes a head-disk interface (HDI) more susceptible to potential head-wear and contamination related issues. Such degradation processes are often accompanied by a noticeable shift in the head-disk clearance. Hence monitoring an interface for a spacing change can be helpful in early detection of its imminent failure. In this paper, we present a method to detect the change in head-disk spacing using an embedded contact sensor (ECS). This technique involves the analysis of ECS dynamic response for an interface that is subjected to heater induced spacing modulations. As the head moves closer to the disk surface, the magnitude of the ECS frequency components can be used to determine the ‘characteristic spacing’ which can be used as a metric to detect any physical change for a given interface.


Friction ◽  
2018 ◽  
Vol 7 (6) ◽  
pp. 564-571
Author(s):  
Zhengqiang Tang ◽  
Dongdong Zhou ◽  
Tong Jia ◽  
Deng Pan ◽  
Chuanwei Zhang

Sign in / Sign up

Export Citation Format

Share Document