high hardness
Recently Published Documents


TOTAL DOCUMENTS

1956
(FIVE YEARS 596)

H-INDEX

40
(FIVE YEARS 8)

2022 ◽  
Vol 11 (2) ◽  
pp. 321-330
Author(s):  
Shuna Chen ◽  
Hengzhong Fan ◽  
Yunfeng Su ◽  
Wensheng Li ◽  
Jicheng Li ◽  
...  

AbstractCubic boron nitride (cBN) with high hardness, thermal conductivity, wear resistance, and chemical inertness has become the most promising abrasive and machining material. Due to the difficulty of fabricating pure cBN body, generally, some binders are incorporated among cBN particles to prepare polycrystalline cubic boron nitride (PcBN). Hence, the binders play a critical factor to the performances of PcBN composites. In this study, the PcBN composites with three binder systems containing ceramic and metal phases were fabricated by spark plasma sintering (SPS) from 1400 to 1700 °C. The sintering behaviors and mechanical properties of the composites were investigated. Results show that the effect of binder formulas on mechanical properties mainly related to the compactness, mechanical performances, and thermal expansion coefficient of binder phases, which affect the carrying capacity of the composites and the bonding strength between binder phases and cBN particles. The PcBN composite with SiAlON phase as binder presented optimal flexural strength (465±29 MPa) and fracture toughness (5.62±0.37 MPa·m1/2), attributing to the synergistic effect similar to transgranular and intergranular fractures. Meanwhile, the excellent mechanical properties can be maintained a comparable level when the temperature even rises to 800 °C. Due to the weak bonding strength and high porosity, the PcBN composites with Al2O3-ZrO2(3Y) and Al-Ti binder systems exhibited inferior mechanical properties. The possible mechanisms to explain these results were also analyzed.


2022 ◽  
Author(s):  
A.E. Litvinov

Abstract. The article presents a method for producing a nanostructured wear-resistant high-hard coating with high physicomechanical and strength characteristics, resistance to shock and vibration loads. The result is an increase in adhesion between the substrate and the coating, as well as an increase in microhardness. One of the common methods of metal cutting is band-cutting machines that use closed band saws as cutting tools. Since materials with high physicomechanical characteristics (hardness, strength, etc.) are increasingly being used in modern production, which significantly complicates the cutting process and makes increased demands on the cutting tool. To expand the range of processed materials for which the productive use of band-cutting machines is possible, it became necessary to create a band saw with higher cutting characteristics. At the same time, the specificity of the working conditions of the band saw shows that the blade should have such characteristics as increased vibration resistance, resistance to alternating and dynamic loads, and the cutting part of the saw should have increased resistance to shock, dynamic, alternating loads, have high hardness, as well as increased wear resistance.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Hai-Ping Tsui ◽  
Shih-Yu Hsu

Fe-based metallic glass possesses high hardness and brittleness. It is a hard-to-cut metal material and difficult to machine by conventional methods. Although electrical discharge machining (EDM) has advantages in machining hard-to-cut metal materials, recast layer, pores, and micro cracks will form on the machined surface after machining. The study used a helical tool for the micro electrical discharge drilling (µ-EDD) process on Fe-based metallic glass. The influence of processing parameters, including the pulse on time, gap voltage, duty factor, and spindle rotational speed on the micro hole machining quality characteristics was investigated. The helical tool with SiC electrophoretic deposited (EPD) film was used to polish the inner surface of the electrical discharged micro hole. The findings show that the best micro hole accuracy, tool wear length, and inner surface were obtained at the spindle rotation speed of 1150 rpm, pulse on time of 5 μs, gap voltage of 30 V, and duty factor of 40%. The inner surface roughness can be reduced to 0.018 µm by using EPD tool. The inner surface was polished up to form a mirror surface.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Rong Gen Neo ◽  
Kaiqiang Wu ◽  
Sung Chyn Tan ◽  
Wei Zhou

Cold spray technology using micron-sized particles to produce coatings is increasingly used for reparative tasks in various industries. In a cold spray setup, the gun is usually connected to a robotic arm to deposit coatings on components with complex geometries. For these components, the standoff distance used in the cold spray process has to be large enough for easy maneuverability of the gun around a small radial feature. However, a small standoff distance is commonly found in most studies, which is thought to prevent a velocity drop of the particles over a larger distance. Here, a study was carried out by measuring the Inconel 625 particle velocity at different spray distances, ranging from 3 to 40 cm. The highest average velocity of 781 m/s was found at a spray distance of 8 cm. Furthermore, a study with varying powder feed rates was also conducted. An increase in the powder feed rate was found to have a minimal effect on the particle velocity. Inconel 625 coatings deposited at the optimum standoff distance (8 cm) were found to have low porosity and high hardness. The results in this study demonstrate that a larger standoff distance can be applied without a significant drop in velocity for cold spray applications requiring high maneuverability.


Author(s):  
Beiping Dong ◽  
Ziang Li ◽  
Juncheng Liu ◽  
Lifang Nie
Keyword(s):  

2022 ◽  
pp. 363-379
Author(s):  
Fredrick M. Mwema ◽  
Job Maveke Wambua

Polymers have been adopted industrially in the manufacture of lenses for optical applications due to their attractive properties such as high hardness, high strength, high ductility, high fracture toughness, and also their low thermal and electrical conductivities. However, they have limited machinability and are therefore classified as hard-to-machine materials. This study conducts a critical review on the machining of various polymers and polymeric materials, with particular focus on poly (methyl methacrylate) (PMMA). From the review it was concluded that various machining parameters affect the output qualities of polymers and which include the spindle speed, the feed rate, vibrations, the depth of cut, and the machining environment. These parameters tend to affect the surface roughness, the cutting forces, delamination, cutting temperatures, tool wear, precision, vibrations, material removal rate, and the mechanical properties such as hardness, among others. A multi-objective optimization of these machining parameters is therefore required, especially in the machining of PMMA.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 285
Author(s):  
Tao Jiang ◽  
Shizhong Wei ◽  
Liujie Xu ◽  
Cheng Zhang ◽  
Xiaodong Wang ◽  
...  

The development of wear-resistant materials with excellent properties is of great research value in the manufacturing industry. In this paper, a new kind of low-vanadium wear-resistant alloy was designed and characterized to unveil the influence of vanadium content coupling with heat treatment on the microstructure, hardness, and abrasive wear property. The performances of commercial high chromium cast iron (HCCI) and the new low-vanadium wear-resistant alloy are compared. The alloy with 3 wt.% vanadium quenched at 900 °C and tempered at 250 °C, possessing VC, Mo2C, and M7C3 distributed in the martensite matrix, displayed a wear resistance two times better than the HCCI. The results showed that the increase of vanadium content from 0.98 wt.% to 3.00 wt.% resulted in a decrease in the size of M7C3 and a more homogeneous distribution of M7C3. VC with a bimodal distribution is effective for impeding grooving or indenting by abrasives because of their high hardness, which plays a vital role in improving the wear resistance of low-vanadium wear-resistant alloy.


Sign in / Sign up

Export Citation Format

Share Document