Static frequency chirping in lambda /4-phase-shifted distributed-feedback semiconductor lasers: influence of carrier-density nonuniformity due to spatial hole burning

1990 ◽  
Vol 26 (1) ◽  
pp. 45-49 ◽  
Author(s):  
K. Kikuchi
2017 ◽  
Vol 9 (4) ◽  
pp. 131 ◽  
Author(s):  
Mohammed Mehdi Bouchene ◽  
Rachid Hamdi ◽  
Qin Zou

We propose a novel semiconductor laser structure. It is composed of three cascaded active sections: a Fabry-Pérot laser section sandwiched between two gain-coupled distributed feedback (DFB) laser sections. We have modeled this multi-section structure. The simulation results show that compared with index- and gain-coupled DFB lasers, a significant reduction in the longitudinal spatial-hole burning can be obtained with the proposed device, and that this leads to a stable single longitudinal mode operation at relatively high optical power with a SMSR exceeding 56dB. Full Text: PDF ReferencesL.A. Coldren, "Monolithic tunable diode lasers", IEEE J. Select. Topics Quant. Electron. 6, 988 (2000) CrossRef O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 [micro sign]m wavelength", Electron. Lett. 33(6), 488 (1997). CrossRef N. Kim, J. Shin, E. Sim, C.W. Lee, D.-S. Yee, M.Y. Jeon, Y. Jang, K.H. Park, "Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation", Opt. Expr. 17(16), 13851 (2009). CrossRef M.J. Wallace, R. ORreilly Meehan, R.R Enright, F. Bello, D. Mccloskey, B. Barabadi, E.N. Wang, J.F. Donegan, "Athermal operation of multi-section slotted tunable lasers", Opt. Expr. 25(13), 14426 (2017). CrossRef J.E. Carroll, J.E.A. Whiteaway, R.G.S. Plumb, "Distributed Feedback Semiconductor Lasers", Distributed feedback semiconductor lasers (IEE and SPIE, 1998). CrossRef H. Ghafour-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003). CrossRef D.D. Marcenac, Ph.D dissertation (University of Cambridge, 1993). DirectLink L.M. Zhang, J.E. Carroll, C. Tsang, "Dynamic response of the gain-coupled DFB laser", IEEE J. Quant. Electr. 29, 1722 (1993). CrossRef W. Li, W.-P. Huang, X. Li, J. Hong, "Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation", IEEE J. Quant. Electro. 36(10), 1110 (2000). CrossRef B.M. Mehdi, H. Rachid, in Proc. 3rd Intern. Conf. on Embedded Systems in Telecomm. and Instrument., Annaba, Algeria (2016). DirectLinkC. Henry, "Theory of the linewidth of semiconductor lasers", IEEE J.Quant. Electr. QE-18, 259 (1982). CrossRef K. Takaki, T. Kise, K. Maruyama, N. Yamanaka, M. Funabashi, A. Kasukawa, "Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-/spl mu/m continuous-wave distributed-feedback (CW-DFB) laser diodes", IEEE J. Quant. Electr. 39, 1060 (2003) CrossRef


1993 ◽  
Vol 71 (1-2) ◽  
pp. 29-38 ◽  
Author(s):  
Yves Champagne ◽  
Nathalie McCarthy

The effects of the longitudinal spatial hole burning on the static lasing characteristics of a specific configuration of distributed-feedback semiconductor laser with three phase-shift regions are investigated using a numerical approach. A serious degradation of the stability of the optimum design, having the flattest axial intensity distribution at low output power, is predicted for drive levels beyond a critical value. The lasing wavelength exhibits a sudden shift (wavelength chirping), along with a significant degradation of the single-mode character of the longitudinal-mode spectrum. Thus, the potentialities of this multiple-phase-shift structure to provide a stable narrow-linewidth emission at high output power appear to be less than expected from results calculated for the near-threshold regime. Nevertheless, it is found that a multiple-phase-shift configuration that departs slightly from the optimum case suffices to recover most of the promises expected from this distributed-feedback laser design.


Sign in / Sign up

Export Citation Format

Share Document