A novel feature extraction method for the development of nonintrusive load monitoring system based on BP-ANN

Author(s):  
Yu-Hsiu Lin ◽  
Men-Shen Tsai
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Baosen Wang ◽  
Bobo Zong ◽  
Hongwei Wang ◽  
Bo Han

The wearable sensor monitoring system builds a long jump take-off recognition network model based on different digital feature extraction methods (one-dimensional digital feature extraction method, two-dimensional digital feature extraction method, and feature extraction method combining one-dimensional digitization and recursion). Experimental verification and analysis are performed on the processed sample data, and the identification effects, advantages, and disadvantages of the four methods are obtained. First, the sensor behavior movement collection software is designed based on the Android system, and the collection time and frequency are specified at the same time. In addition, for the problem of multisensor behavior recognition, an effective result fusion method is proposed. In a multisensor behavior recognition system, constructing a parallel processing architecture is conducive to improving the rate of behavior recognition. To maintain or increase the rate of behavior recognition, the result fusion method plays a vital role. Finally, this paper analyzes the process of multitask behavior recognition and constructs a residual model that can effectively integrate multitask results and fully mine data information. The experimental results show that, for the monitoring of exercise volume, we use step count statistics to extract feature values that can distinguish activity types based on human motion characteristics. This paper proposes a sample autonomous learning method to find the optimal sample training set and avoid occurrence of overfitting problems. In the recognition of 11 types of long jump take-offs, the average accuracy rate reached 98.7%. The average replacement method is used to count the number of steps, which provides a data reference for the user’s daily exercise volume.


2020 ◽  
Vol 27 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Xuan Xiao ◽  
Wei-Jie Chen ◽  
Wang-Ren Qiu

Background: The information of quaternary structure attributes of proteins is very important because it is closely related to the biological functions of proteins. With the rapid development of new generation sequencing technology, we are facing a challenge: how to automatically identify the four-level attributes of new polypeptide chains according to their sequence information (i.e., whether they are formed as just as a monomer, or as a hetero-oligomer, or a homo-oligomer). Objective: In this article, our goal is to find a new way to represent protein sequences, thereby improving the prediction rate of protein quaternary structure. Methods: In this article, we developed a prediction system for protein quaternary structural type in which a protein sequence was expressed by combining the Pfam functional-domain and gene ontology. turn protein features into digital sequences, and complete the prediction of quaternary structure through specific machine learning algorithms and verification algorithm. Results: Our data set contains 5495 protein samples. Through the method provided in this paper, we classify proteins into monomer, or as a hetero-oligomer, or a homo-oligomer, and the prediction rate is 74.38%, which is 3.24% higher than that of previous studies. Through this new feature extraction method, we can further classify the four-level structure of proteins, and the results are also correspondingly improved. Conclusion: After the applying the new prediction system, compared with the previous results, we have successfully improved the prediction rate. We have reason to believe that the feature extraction method in this paper has better practicability and can be used as a reference for other protein classification problems.


Sign in / Sign up

Export Citation Format

Share Document