On-line learning control of autonomous underwater vehicles using feedforward neural networks

1992 ◽  
Vol 17 (4) ◽  
pp. 308-319 ◽  
Author(s):  
K.P. Venugopal ◽  
R. Sudhakar ◽  
A.S. Pandya
2002 ◽  
Vol 124 (3) ◽  
pp. 364-374 ◽  
Author(s):  
Alexander G. Parlos ◽  
Sunil K. Menon ◽  
Amir F. Atiya

On-line filtering of stochastic variables that are difficult or expensive to directly measure has been widely studied. In this paper a practical algorithm is presented for adaptive state filtering when the underlying nonlinear state equations are partially known. The unknown dynamics are constructively approximated using neural networks. The proposed algorithm is based on the two-step prediction-update approach of the Kalman Filter. The algorithm accounts for the unmodeled nonlinear dynamics and makes no assumptions regarding the system noise statistics. The proposed filter is implemented using static and dynamic feedforward neural networks. Both off-line and on-line learning algorithms are presented for training the filter networks. Two case studies are considered and comparisons with Extended Kalman Filters (EKFs) performed. For one of the case studies, the EKF converges but it results in higher state estimation errors than the equivalent neural filter with on-line learning. For another, more complex case study, the developed EKF does not converge. For both case studies, the off-line trained neural state filters converge quite rapidly and exhibit acceptable performance. On-line training further enhances filter performance, decoupling the eventual filter accuracy from the accuracy of the assumed system model.


1999 ◽  
Vol 10 (2) ◽  
pp. 253-271 ◽  
Author(s):  
P. Campolucci ◽  
A. Uncini ◽  
F. Piazza ◽  
B.D. Rao

2007 ◽  
Vol 16 (06) ◽  
pp. 981-999 ◽  
Author(s):  
GEORGIOS N. YANNAKAKIS ◽  
JOHN HALLAM

This paper presents quantitative measurements/metrics of qualitative entertainment features within computer game environments and proposes artificial intelligence (AI) techniques for optimizing entertainment in such interactive systems. A human-verified metric of interest (i.e. player entertainment in real-time) for predator/prey games and a neuro-evolution on-line learning (i.e. during play) approach have already been reported in the literature to serve this purpose. In this paper, an alternative quantitative approach to entertainment modeling based on psychological studies in the field of computer games is introduced and a comparative study of the two approaches is presented. Feedforward neural networks (NNs) and fuzzy-NNs are used to model player satisfaction (interest) in real-time and investigate quantitatively how the qualitative factors of challenge and curiosity contribute to human entertainment. We demonstrate that appropriate non-extreme levels of challenge and curiosity generate high values of entertainment and we project the extensibility of the approach to other genres of digital entertainment (e.g. mixed-reality interactive playgrounds).


Sign in / Sign up

Export Citation Format

Share Document