state equations
Recently Published Documents


TOTAL DOCUMENTS

816
(FIVE YEARS 137)

H-INDEX

31
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 562
Author(s):  
Yong Wang ◽  
Mingliang Chang ◽  
Long Chen ◽  
Shouxi Wang ◽  
Shihao Fan ◽  
...  

The reinjection of the fire-flooding exhaust is a novel disposal process for handling the exhaust produced by the in-situ combustion technology. For reasonable process design and safe operation, it is of great significance to select an optimum property calculation method for the fire-flooding exhaust. However, due to the compositional particularity and the wide range of operating parameters during reinjection, the state equations in predicting the exhaust properties over the wide range of operating parameters have not been studied clearly yet. Hence, this paper investigates the applicability of several commonly-used equations of state, including the Soave–Redlich–Kwong equation, Peng–Robinson equation, Lee–Kesler–Plocker equation, Benedict–Webb–Rubin–Starling equation, and GERG-2008 equations. Employing Aspen Plus software, the gas densities, compressibility factors, volumetric coefficients, and dew points for five exhaust compositions are calculated. In comparison with the experimental data comprehensively, the result indicates that the Soave–Redlich–Kwong equation shows the highest precision over a wide range of temperature and pressure. The mean absolute percentage error for the above four parameters is 3.84%, 5.17%, 5.53%, and 4.33%, respectively. This study provides a reference for the accurate calculation of the physical properties of fire-flooding exhausts when designing and managing a reinjection system of fire-flooding exhaust.


2022 ◽  
Author(s):  
Zhi-Xu Zhang ◽  
Lu Qi ◽  
Wen-Xue Cui ◽  
Shou Zhang ◽  
Hong-Fu Wang

Abstract We investigate the topological phase transition and the enhanced topological effect in cavity optomechanical system with periodical modulation. By calculating the steady-state equations of the system, the steady-state conditions of cavity fields and the restricted conditions of effective optomechanical couplings are demonstrated. It is found that the cavity optomechanical system can be modulated to different topological Su-Schrieffer-Heeger (SSH) phases via designing the optomechanical couplings legitimately. Meanwhile, combining the effective optomechanical couplings and the probability distributions of gap states, we reveal the topological phase transition between trivial SSH phase and nontrivial SSH phase via adjusting the decay rates of cavity fields. Moreover, we find that the enhanced topological effect of gap states can be achieved by enlarging the size of system and adjusting the decay rates of cavity fields.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 123
Author(s):  
Renata Nikonorova ◽  
Dilara Siraeva ◽  
Yulia Yulmukhametova

In this paper, exact solutions with a linear velocity field are sought for the gas dynamics equations in the case of the special state equation and the state equation of a monatomic gas. These state equations extend the transformation group admitted by the system to 12 and 14 parameters, respectively. Invariant submodels of rank one are constructed from two three-dimensional subalgebras of the corresponding Lie algebras, and exact solutions with a linear velocity field with inhomogeneous deformation are obtained. On the one hand of the special state equation, the submodel describes an isochoric vortex motion of particles, isobaric along each world line and restricted by a moving plane. The motions of particles occur along parabolas and along rays in parallel planes. The spherical volume of particles turns into an ellipsoid at finite moments of time, and as time tends to infinity, the particles end up on an infinite strip of finite width. On the other hand of the state equation of a monatomic gas, the submodel describes vortex compaction to the origin and the subsequent expansion of gas particles in half-spaces. The motion of any allocated volume of gas retains a spherical shape. It is shown that for any positive moment of time, it is possible to choose the radius of a spherical volume such that the characteristic conoid beginning from its center never reaches particles outside this volume. As a result of the generalization of the solutions with a linear velocity field, exact solutions of a wider class are obtained without conditions of invariance of density and pressure with respect to the selected three-dimensional subalgebras.


2022 ◽  
Vol 258 ◽  
pp. 03001
Author(s):  
Markus Q. Huber ◽  
Christian S. Fischer ◽  
Hèlios Sanchis-Alepuz

We give an overview of results for the quenched glueball spectrum from two-body bound state equations based on the 3PI effective action. The setup, which uses self-consistently calculated two- and three-point functions as input, is completely self-contained and does not have any free parameters except for the coupling. The results for JPC = 0±+, 2±+, 3±+, 4±+ are in good agreement with recent lattice results where available. For the pseudoscalar glueball, we present first results from a two-loop complete calculation, rendering also the bound state calculation fully self-consistent.


2021 ◽  
Vol 12 (1) ◽  
pp. 178
Author(s):  
Ioana-Monica Pop-Calimanu ◽  
Sorin Popescu ◽  
Dan Lascu

In this paper, a new hybrid SEPIC dc-dc converter with coupled inductors suitable for photovoltaic applications is presented. First, how the new topology was derived will be presented, continuing with its analysis and design equation as a standalone dc-dc topology. The analysis will consist of a steady-state equations derivation, a static conversion ratio calculation based on which the semiconductor voltage and current stresses are evaluated and states the continuous conduction mode (CCM) operation conditions. The converter will then be simulated as a first validation of the theory using the dedicated Caspoc power electronics package. To finally validate the theoretical design, a prototype will be built in order to practically demonstrate the feasibility of the proposed solution and to reveal its main practical features and limitations. A comparative study to several other similar topologies will be carried out to identify its most desirable feature. Finally, an application of the new hybrid converter will consist of a complete solar energy conversion system using a photovoltaic panel. The maximum power point tracking (MPPT) algorithm will be elaborated. The solar system together with the MPPT will first be modeled, then simulated and practically implemented and tested.


Author(s):  
Nassar Haidar

Abstract Compact neutronic shields for mobile nuclear reactors or accelerator-based neutron beams are known to be optimized multilayered composites. This paper is a simplified short inroad to the complex problem of optimizing the design of such shields when they attenuate a neutron beam to extremise certain quality criteria, in plane geometry, subject to equality and inequality constraints. In the equality constraints, the interfacial polychromatic neutron fluxes are solutions to course-mesh finite-difference holonomic state equations. The set of these interfacial fluxes act as state variables,while the set of layer thicknesses, or their poisoning (by added neutron absorbers) concentrations are decision variables. The entire procedure is then demonstrated to be reducible to standard Kuhn-Tucker semi-linear programming that may also lead robustly to an optimal sequence for these layers.


2021 ◽  
Author(s):  
Hossein Saeedifard

As the electric power grid increasingly hosts energy storage devices, renewable energy resources, plug-in hybrid and electric vehicles, and data centers, it is expected to benefit in the future from a multi-layer DC structure meshed within its legacy AC architecture. As such a multi-layer grid structure evolves, interconnection of DC grids with different voltage levels will become necessary. For such interconnections and for power-flow control, efficient isolated DC-DC converters are a key enabling technology. This thesis thus presents the results of an in-depth investigation into the operation, modulation, control, and performance assessment of a particular DC-DC converter configuration. The proposed DC-DC converter, which is based upon a hybrid combination of the conventional dual-active-bridge topology and the modular multi-level converter (MMC) configuration, is a potential candidate topology for interconnection of medium- and low-voltage DC grids. The thesis first introduces the circuit topology and presents the basics of operation and governing steady-state equations for the converter. Then, based on the developed mathematical model, it identifies a suitable modulation strategy for the converter bridges and submodules, as well as strategies for the regulation of the MMC submodule capacitor voltages and soft switching of the constituent semiconductor devices. The proposed converter topology offers significant benefits including galvanic isolation, utilization of the transformer’s leakage inductance, soft switching for high-frequency operation, and bidirectional power flow capability. The validity of the mathematical model, effectiveness of the proposed modulation and control strategies, and the realization of soft switching are verified through off-line simulation of a detailed circuit model as well as experiments conducted on a 1-kW experimental setup.


2021 ◽  
Author(s):  
Hossein Saeedifard

As the electric power grid increasingly hosts energy storage devices, renewable energy resources, plug-in hybrid and electric vehicles, and data centers, it is expected to benefit in the future from a multi-layer DC structure meshed within its legacy AC architecture. As such a multi-layer grid structure evolves, interconnection of DC grids with different voltage levels will become necessary. For such interconnections and for power-flow control, efficient isolated DC-DC converters are a key enabling technology. This thesis thus presents the results of an in-depth investigation into the operation, modulation, control, and performance assessment of a particular DC-DC converter configuration. The proposed DC-DC converter, which is based upon a hybrid combination of the conventional dual-active-bridge topology and the modular multi-level converter (MMC) configuration, is a potential candidate topology for interconnection of medium- and low-voltage DC grids. The thesis first introduces the circuit topology and presents the basics of operation and governing steady-state equations for the converter. Then, based on the developed mathematical model, it identifies a suitable modulation strategy for the converter bridges and submodules, as well as strategies for the regulation of the MMC submodule capacitor voltages and soft switching of the constituent semiconductor devices. The proposed converter topology offers significant benefits including galvanic isolation, utilization of the transformer’s leakage inductance, soft switching for high-frequency operation, and bidirectional power flow capability. The validity of the mathematical model, effectiveness of the proposed modulation and control strategies, and the realization of soft switching are verified through off-line simulation of a detailed circuit model as well as experiments conducted on a 1-kW experimental setup.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052077
Author(s):  
A Koroleva ◽  
M Frantsuzov ◽  
I Antanenkova

Abstract The required operation of a heat exchanger with spherical filling depends on determining the heat characteristic of the porous medium. Using most existing dependencies to determine the heat-exchange coefficient in a porous medium gives contradictory results. This paper proposes a calculation method to determine heat characteristics of a porous medium (namely, spherical filling) using numerical modeling. This issue is addressed in a 3D setting using the RANS equation systemk- ε RNG, a turbulence model, energy and state equations for gas flows through the porous medium represented as regular packed beds of three types. Two modes are considered, which differ in the working medium type and heat exchange process direction. Modeling is done to determine the following parameters; Reh=100…4·104, Prwb=0.57… 0.919, ε=0.2595… 0.4764, Twb=300… 1900 K, Tw=300… 1900 K. The analysis results of the influence of the temperature factor, porosity, and heat physical properties of the working medium on the heat exchange are represented. Heat characteristics are given for each case scenario: about 360 reference points are obtained. A modified type of criterial dependencyNusf(Reh) is proposed and approximation coefficients are determined.


2021 ◽  
Author(s):  
Keith J. Roberts ◽  
Alexandre Olender ◽  
Lucas Franceschini ◽  
Robert C. Kirby ◽  
Rafael S. Gioria ◽  
...  

Abstract. In this article, we introduce spyro, a software stack to solve acoustic wave propagation in heterogeneous domains and perform full waveform inversion (FWI) employing the finite element framework from Firedrake, a high-level Python package for the automated solution of partial differential equations using the finite element method. The capability of the software is demonstrated by using a continuous Galerkin approach to perform FWI for seismic velocity model building, considering realistic geophysics examples. A time-domain FWI approach is detailed that uses meshes composed of variably sized triangular elements to discretize the domain. To resolve both the forward and adjoint-state equations, and to calculate a mesh-independent gradient associated with the FWI process, a fully-explicit, variable higher-order (up to degree k = 5 in 2D and k = 3 in 3D) mass lumping method is used. We show that, by adapting the triangular elements to the expected peak source frequency and properties of the wavefield (e.g., local P-wavespeed) and by leveraging higher-order basis functions, the number of degrees-of-freedom necessary to discretize the domain can be reduced. Results from wave simulations and FWIs in both 2D and 3D highlight our developments and demonstrate the benefits and challenges with using triangular meshes adapted to the material properties.


Sign in / Sign up

Export Citation Format

Share Document