A real and reactive power control approach for battery energy storage system

1992 ◽  
Vol 7 (3) ◽  
pp. 1132-1140 ◽  
Author(s):  
C.E. Lin ◽  
Y.S. Shiao ◽  
C.-L. Huang ◽  
P.S. Sung
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5170
Author(s):  
Jürgen Marchgraber ◽  
Wolfgang Gawlik

Microgrids are small scale electrical power systems that comprise distributed energy resources (DER), loads, and storage devices. The integration of DER into the electrical power system basically allows the clustering of small parts of the main grid into Microgrids. Due to the increasing amount of renewable energy, which is integrated into the main grid, high power fluctuations are expected to become common in the next years. This carries the risk of blackouts to be also more likely in the future. Microgrids hold the potential of increasing reliability of supply, since they are capable of providing a backup supply during a blackout of the main grid. This paper investigates the black-starting and islanding capabilities of a battery energy storage system (BESS) in order to provide a possible backup supply for a small part of the main grid. Based on field tests in a real Microgrid, the backup supply of a residential medium voltage grid is tested. Whereas local wind turbines within this grid section are integrated into this Microgrid during the field test, the supply of households is reproduced by artificial loads consisting of impedance- and motor loads, since a supply of real households carries a high risk of safety issues and open questions regarding legal responsibility. To operate other DER during the island operation of such a Microgrid, control mechanisms have to ensure the power capabilities and energy reserves of the BESS to be respected. Since the operation during a backup supply of such a Microgrid requires a simple implementation, this paper presents a simple master–slave control approach, which influences the power output of other DER based on frequency characteristics without the need for further communication. Besides the operation of other DER, the capability to handle load changes during island operation while ensuring acceptable power quality is crucial for such a Microgrid. With the help of artificial loads, significant load changes of the residential grid section are reproduced and their influence on power quality is investigated during the field tests. Besides these load changes, the implementation and behavior of the master–slave control approach presented in this paper is tested. To prepare these field tests, simulations in Matlab/Simulink are performed to select appropriate sizes for the artificial loads and to estimate the expected behavior during the field tests. The field tests prove that a backup supply of a grid section during a blackout of the main grid by a BESS is possible. By creating the possibility of operating other DER during this backup supply, based on the master–slave control approach presented in this paper, the maximum duration for this backup supply can be increased.


Author(s):  
Maheswar Prasad Behera ◽  
Pravat Kumar Ray

Abstract The feasibility of integration of Battery Energy Storage System (BESS) with a three-phase AC grid is being investigated in this paper. A converter is an inevitable part of a modern DC generating system. The link between the grid and the BESS is established through a Voltage Source Converter (VSC). Therefore, the converter can be utilized to dispatch the DC generated power to the connected AC grid and at the same time provides reactive power compensation and load harmonic compensation throughout the day. The DC bus voltage control of the converter system is carried out to keep the power factor always at unity, irrespective of the charging state of the battery source. The charging and discharging of the connected battery energy storage system are carried out through a bidirectional DC-DC converter. Adaptive hysteresis band current control (AHCC) scheme is employed to produce the switching signals. Finally, its performance is compared with the traditional hysteresis band control technique.


Author(s):  
D.V.N. Ananth ◽  
G.V. Nagesh Kumar

In this paper, enhanced field oriented control technique (EFOC) was adopted in Rotor Side Control (RSC) of DFIG converter for improved response during severe faults. The work is intended to damp pulsations in electromagnetic torque, improve voltage mitigation and limit surge currents and to enhance the operation of DFIG during voltage sags. The converter topology uses a battery energy storage system with capacitor storage system to further enhance operation of DFIG during faults. The battery and capacitor system in coordination provide additional real and reactive power support during faults and nearly constant voltage profile at stator and rotor terminals and limit overcurrents. For EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during overvoltage faults. The offset decomposition of flux will be oscillatory in a conventional FOC, whereas in EFOC it will damp quickly. A comparison is made with proposed methodology with battery energy storage system and a conventional system. Later the system performance with under voltage of 50% the rated voltage with fault at PCC during 0.8 to 1.2 seconds is analysed using simulation studies.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 216844-216855
Author(s):  
Ciro Nunez ◽  
Nancy Visairo-Cruz ◽  
Alberto Arellanes ◽  
Dante Mora ◽  
Juan Segundo

Sign in / Sign up

Export Citation Format

Share Document