An innovative approach to generations scheduling in large-scale hydro-thermal power systems with fuel constrained units

1990 ◽  
Vol 5 (2) ◽  
pp. 665-673 ◽  
Author(s):  
S.K. Tong ◽  
S.M. Shahidehpour
Author(s):  
Qianyu Shi ◽  
Zhijian Wang ◽  
Hui Tang ◽  
Qi Li

Abstract Large scale molten salt storage tanks are widely used in the solar thermal power systems. For these tanks, buckling is a primary failure mode because of its features such as large scale, thinned wall and high temperature. Suffering high temperature condition is a major distinction between molten salt storage tanks and other water or oil tanks. High temperature can cause large thermal deformation for large scale structures which may have an effect on the safety assessment, especially on buckling assessment. Meanwhile, the hydrostatic pressure of molten salt can also cause the change of tank’s configuration. In this paper, a typical large molten salt storage tank has been studied. The critical buckling loads of the tank roof are obtained using nonlinear buckling analysis considering thermal loads and hydrostatic pressure. The results are discussed and some conclusions are proposed for engineering design.


2021 ◽  
Vol 242 ◽  
pp. 01003
Author(s):  
Md. Sakib Hossain ◽  
Soad Shajid

Electricity generation using solar thermal power systems can be made more efficient and both technically and economically feasible in countries receiving moderate solar radiation like Bangladesh through thorough optimization of different parts of the power plant. In this paper a theoretical and mathematical framework for optimization of a 150 MW solar tower thermal power plant in Bangladesh which uses molten salt as HTF has been developed by applying different methods of selecting crucial design aspects, such as design point DNI, solar multiple, design point temperature etc. after selecting the most appropriate location based on GHI and DNI data. The effect of these design aspects on the overall design of the power plant including the number of heliostats, solar field land area, tower height, receiver dimensions etc. have also been studied and finally the performance analysis of the power plant has been conducted. Analysis of performance reveals that the optimized power plant would be able to deliver 528.66 GW-h electricity annually to the national grid while operating at a capacity factor of 40.2% and gross-net conversion efficiency of 88.635%. The promising performance of the power plant would encourage further research and innovation regarding large scale electricity generation from solar energy in Bangladesh.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3566 ◽  
Author(s):  
Quanhui Che ◽  
Suhua Lou ◽  
Yaowu Wu ◽  
Xiangcheng Zhang ◽  
Xuebin Wang

With the grid-connected operation of large-scale wind farms, the contradiction between supply and demand of power systems is becoming more and more prominent. The introduction of multiple types of flexible resources provides a new technical means for improving the supply–demand matching relationship of system flexibility and promoting wind power consumption. In this paper, multi-type flexible resources made up of deep peak regulation of thermal units, demand response, and energy storage were utilized to alleviate the peak regulation pressure caused by large-scale wind power integration. Based on current thermal plant deep peak regulation technology, a three-phase peak regulation cost model of thermal power generation considering the low load fatigue life loss and oil injection cost of the unit was proposed. Additionally, from the perspective of supply–demand balance of power system flexibility, the flexibility margin index of a power system containing source-load-storage flexible resources was put forward to assess the contribution from each flexibility provider to system flexibility. Moreover, an optimal dispatching model of a multi-energy power system with large-scale wind power and multi-flexible resources was constructed, aimed at the lowest total dispatching cost of the whole scheduling period. Finally, the model proposed in this paper was validated by a modified RTS96 system, and the effects of different flexibility resources and wind power capacity on the optimal scheduling results were discussed.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2195 ◽  
Author(s):  
Tong Guo ◽  
Yajing Gao ◽  
Xiaojie Zhou ◽  
Yonggang Li ◽  
Jiaomin Liu

Due to the randomness, volatility and intermittent nature of wind power, power systems with significant wind penetration face serious “curtailment” problems. The flexibility of a power system is an important factor that affects the large-scale consumption of wind power. Based on this fact, this paper takes into account the economics and flexibility of the system, and proposes an optimal scheduling method that takes the flexibility of each thermal power unit into account. Firstly, a comprehensive evaluation index system of thermal power unit flexibility is designed by an analytic hierarchy process and entropy method. The system covers the technical indexes and economic characteristics of thermal power units and is able to quantitatively evaluate the different types of thermal power units in the system. Secondly, a multi-objective optimization scheduling model involving the overall flexibility of the unit and the total power generation cost is established. Finally, the correctness and effectiveness of the proposed indicators and models are verified by a case study.


Sign in / Sign up

Export Citation Format

Share Document