Efficient Small Angle-of-Arrival Array Sensor for Intelligent Localisation and Tracking Systems

Author(s):  
Mohammed A. G. Al-Sadoon ◽  
Mohammad N. Patwary ◽  
Md Arafatur Rahman ◽  
Raed A. Abd-Alhameed
Author(s):  
J. Silcox ◽  
R. H. Wade

Recent work has drawn attention to the possibilities that small angle electron scattering offers as a source of information about the micro-structure of vacuum condensed films. In particular, this serves as a good detector of discontinuities within the films. A review of a kinematical theory describing the small angle scattering from a thin film composed of discrete particles packed close together will be presented. Such a model could be represented by a set of cylinders packed side by side in a two dimensional fluid-like array, the axis of the cylinders being normal to the film and the length of the cylinders becoming the thickness of the film. The Fourier transform of such an array can be regarded as a ring structure around the central beam in the plane of the film with the usual thickness transform in a direction normal to the film. The intensity profile across the ring structure is related to the radial distribution function of the spacing between cylinders.


Author(s):  
Ralph Oralor ◽  
Pamela Lloyd ◽  
Satish Kumar ◽  
W. W. Adams

Small angle electron scattering (SAES) has been used to study structural features of up to several thousand angstroms in polymers, as well as in metals. SAES may be done either in (a) long camera mode by switching off the objective lens current or in (b) selected area diffraction mode. In the first case very high camera lengths (up to 7Ø meters on JEOL 1Ø ØCX) and high angular resolution can be obtained, while in the second case smaller camera lengths (approximately up to 3.6 meters on JEOL 1Ø ØCX) and lower angular resolution is obtainable. We conducted our SAES studies on JEOL 1ØØCX which can be switched to either mode with a push button as a standard feature.


1993 ◽  
Vol 03 (C8) ◽  
pp. C8-393-C8-396
Author(s):  
T. P.M. BEELEN ◽  
W. H. DOKTER ◽  
H. F. VAN GARDEREN ◽  
R. A. VAN SANTEN ◽  
E. PANTOS

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Fatima Ameen ◽  
Ziad Mohammed ◽  
Abdulrahman Siddiq

Tracking systems of moving objects provide a useful means to better control, manage and secure them. Tracking systems are used in different scales of applications such as indoors, outdoors and even used to track vehicles, ships and air planes moving over the globe. This paper presents the design and implementation of a system for tracking objects moving over a wide geographical area. The system depends on the Global Positioning System (GPS) and Global System for Mobile Communications (GSM) technologies without requiring the Internet service. The implemented system uses the freely available GPS service to determine the position of the moving objects. The tests of the implemented system in different regions and conditions show that the maximum uncertainty in the obtained positions is a circle with radius of about 16 m, which is an acceptable result for tracking the movement of objects in wide and open environments.


2012 ◽  
Vol 132 (7) ◽  
pp. 203-211 ◽  
Author(s):  
Ichiro Okuda ◽  
Tomohito Takubo ◽  
Yasushi Mae ◽  
Kenichi Ohara ◽  
Fumihito Arai ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document