silica spheres
Recently Published Documents


TOTAL DOCUMENTS

892
(FIVE YEARS 86)

H-INDEX

80
(FIVE YEARS 8)

2022 ◽  
Vol 431 ◽  
pp. 133931
Author(s):  
Xu Han ◽  
Huitao Leng ◽  
Ying Qi ◽  
Pan Yang ◽  
Jingxia Qiu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 205 ◽  
pp. 112529
Author(s):  
Sun Liang ◽  
Zhang Ziyu ◽  
Wang Fulong ◽  
Bai Maojuan ◽  
Deng Xiaoyan ◽  
...  

2022 ◽  
Author(s):  
Qian Xiong ◽  
sihao huang ◽  
Zijun Zhan ◽  
Juan Du ◽  
Xiaosheng Tang ◽  
...  

2021 ◽  
Author(s):  
◽  
Michelle Jane Cook

<p>Technology developed at Victoria University of Wellington by Professor James H. Johnston and Dr Kerstin Lucas allows for the colouring of high quality wool fibres using spherical gold nanoparticles. Gold nanoparticles have interesting colours and optical properties due to surface plasmon resonance effects and, using this technology, a boutique range of colours can be imparted onto wool fibres. The colour of gold nanoparticles is determined by their size and shape, hence the colour range achievable using spherical nanoparticles is limited to those obtained by changing the particle diameter and degree of aggregation of these particles. This limitation can be overcome by using gold nanoparticles of different shapes in conjunction with other materials. This research details the synthesis and characterisation of gold nanoshells on spherical silica cores and their use for the colouring of wool. Silica cores were used in this research as they are reasonably chemically inert and so serve as a stable substrate for the gold shells. Silica spheres are also easily prepared in a manner that allows control over the final particle diameter.  Several syntheses of these core-shell particles have been previously devised however they are not suitable for commercial use. Such syntheses involve many time-consuming steps, high temperatures or light-sensitive reagents. Synthetic methods set out in this research involve a novel in-situ seeding of gold nanoparticles for the growth of the shells eliminating the step of growing gold nanoparticles ex-situ commonly involved in other synthetic schemes. The need for light-sensitive reducing agents is eliminated by the use of other reductants such as sodium borohydride and hydroxylamine. All steps of the synthetic schemes are carried out at less than 100 °C. Several methods of synthesising core-shell particles are outlined in this research, which achieved varying degrees of success. Many syntheses investigated successfully produced core-shell particles but also left many silica spheres without the desired gold shell coating. This was not a problem for the proposed application of colouring wool. As silica is easily dispersed in water and does not have the same affinity to bind to wool as gold does, the silica spheres without gold shells simply wash off after colouring. This allowed the core-shell particles synthesised in this research to be successfully used to colour wool fibres and achieve a shade of purple not previously obtained using the earlier methodologies.</p>


2021 ◽  
Author(s):  
◽  
Michelle Jane Cook

<p>Technology developed at Victoria University of Wellington by Professor James H. Johnston and Dr Kerstin Lucas allows for the colouring of high quality wool fibres using spherical gold nanoparticles. Gold nanoparticles have interesting colours and optical properties due to surface plasmon resonance effects and, using this technology, a boutique range of colours can be imparted onto wool fibres. The colour of gold nanoparticles is determined by their size and shape, hence the colour range achievable using spherical nanoparticles is limited to those obtained by changing the particle diameter and degree of aggregation of these particles. This limitation can be overcome by using gold nanoparticles of different shapes in conjunction with other materials. This research details the synthesis and characterisation of gold nanoshells on spherical silica cores and their use for the colouring of wool. Silica cores were used in this research as they are reasonably chemically inert and so serve as a stable substrate for the gold shells. Silica spheres are also easily prepared in a manner that allows control over the final particle diameter.  Several syntheses of these core-shell particles have been previously devised however they are not suitable for commercial use. Such syntheses involve many time-consuming steps, high temperatures or light-sensitive reagents. Synthetic methods set out in this research involve a novel in-situ seeding of gold nanoparticles for the growth of the shells eliminating the step of growing gold nanoparticles ex-situ commonly involved in other synthetic schemes. The need for light-sensitive reducing agents is eliminated by the use of other reductants such as sodium borohydride and hydroxylamine. All steps of the synthetic schemes are carried out at less than 100 °C. Several methods of synthesising core-shell particles are outlined in this research, which achieved varying degrees of success. Many syntheses investigated successfully produced core-shell particles but also left many silica spheres without the desired gold shell coating. This was not a problem for the proposed application of colouring wool. As silica is easily dispersed in water and does not have the same affinity to bind to wool as gold does, the silica spheres without gold shells simply wash off after colouring. This allowed the core-shell particles synthesised in this research to be successfully used to colour wool fibres and achieve a shade of purple not previously obtained using the earlier methodologies.</p>


2021 ◽  
Author(s):  
Hiroki Okudera ◽  
Tetsuyoshi Takeda

Abstract It has been well known that a sedimentary precious opal is composed of closely packed uni-size silica spheres with voids filled by an air or water, and that an interference among reflections from the boundaries of those spheres and filler yields play-of-colour (iridescence). So, occurrence of a play-of-colour means occurrence of natural selection in size of spheres, or suppression of further nucleation after initial outburst of spheres, during its formation process. We had been exploring the possibility if we can regard a Stöber process as an analogue of the formation process of precious opal. The key is the reason why variation in size is rarely found on both precious opal and Stöber colloid. To give a clue, we examined the internal structure of Stöber particles and how those particles were formed at very initial stage of the process. The answers for evenness in shape and size are a quick supersaturation of reactive silica species, consecutive formation of large and loose polymers by fast dehydration, and their quick aggregation as the initial burst of silica spheres in highly diffusive medium. These can be achieved in nature by quick but continuous decrease in temperature on “basic” (high pH) geothermal hot water moving upward through cracks in rocks. Sedimentary precious opal can thus be formed when such naturally occurring colloid is filtered by a permeable bed.


2021 ◽  
pp. 108500
Author(s):  
Orlette Mkhari ◽  
Themba D. Ntuli ◽  
Neil J. Coville ◽  
Edward N. Nxumalo ◽  
Manoko S. Maubane-Nkadimeng

Sign in / Sign up

Export Citation Format

Share Document