Power quality measurements performed on a low-voltage grid equipped with two wind turbines

1996 ◽  
Vol 11 (3) ◽  
pp. 601-606 ◽  
Author(s):  
T. Thiringer
2017 ◽  
Vol 870 ◽  
pp. 329-334
Author(s):  
Yu Jen Liu ◽  
Yen Chang Chen ◽  
Pei Hsiu Lan ◽  
Tsang Pin Chang

As small wind turbines are increasingly used, the assessments of power quality may thus become paramount. Unlike the large-scale wind turbines which are optional required to perform power quality measurements during production certification stage; however the power quality measurements are often neglected in small wind turbines since they are not requested on the certain of national grid codes at low-voltage distribution system level. Considering the high penetrations of small wind turbines may be connected to the future urban electric network, the paper performs the power quality on-site measurements of a horizontal axle small wind turbines. The issues may include the discussion of measurement system structure, the description of measurement method, and the analysis of wind turbine power characteristic, voltage/current trends, harmonics and flicker phenomena. The measured data collected in the study will valuable for the further analysis of power systems connected with the small wind turbines.


Author(s):  
M. Van Lumig ◽  
S. Bhattacharyya ◽  
J.F.G. Cobben ◽  
W.L. Kling

Author(s):  
Marcus Wiens ◽  
Sebastian Frahm ◽  
Philipp Thomas ◽  
Shoaib Kahn

AbstractRequirements for the design of wind turbines advance facing the challenges of a high content of renewable energy sources in the public grid. A high percentage of renewable energy weaken the grid and grid faults become more likely, which add additional loads on the wind turbine. Load calculations with aero-elastic models are standard for the design of wind turbines. Components of the electric system are usually roughly modeled in aero-elastic models and therefore the effect of detailed electrical models on the load calculations is unclear. A holistic wind turbine model is obtained, by combining an aero-elastic model and detailed electrical model into one co-simulation. The holistic model, representing a DFIG turbine is compared to a standard aero-elastic model for load calculations. It is shown that a detailed modelling of the electrical components e.g., generator, converter, and grid, have an influence on the results of load calculations. An analysis of low-voltage-ride-trough events during turbulent wind shows massive increase of loads on the drive train and effects the tower loads. Furthermore, the presented holistic model could be used to investigate different control approaches on the wind turbine dynamics and loads. This approach is applicable to the modelling of a holistic wind park to investigate interaction on the electrical level and simultaneously evaluate the loads on the wind turbine.


Sign in / Sign up

Export Citation Format

Share Document