Time-domain vector representation of monopole transient electromagnetic radiation using Maple software

2000 ◽  
Vol 42 (5) ◽  
pp. 102-108 ◽  
Author(s):  
A.A. Boryssenko
Author(s):  
Wenjun Huo ◽  
Peng Chu ◽  
Kai Wang ◽  
Liangting Fu ◽  
Zhigang Niu ◽  
...  

In order to study the detection methods of weak transient electromagnetic radiation signals, a detection algorithm integrating generalized cross-correlation and chaotic sequence prediction is proposed in this paper. Based on the dual-antenna test and cross-correlation information estimation method, the detection of aperiodic weak discharge signals under low signal-to-noise ratio is transformed into the estimation of periodic delay parameters, and the noise is reduced at the same time. The feasibility of this method is verified by simulation and experimental analysis. The results show that under the condition of low signal-to-noise ratio, the integrated method can effectively suppress the influence of 10 noise disturbances. It has a high detection probability for weak transient electromagnetic radiation signals, and needs fewer pulse accumulation times, which improves the detection efficiency and is more suitable for long-distance detection of weak electromagnetic radiation sources.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. E481-E491 ◽  
Author(s):  
Andrei Swidinsky ◽  
Misac Nabighian

Electromagnetic surveys using a vertical transmitter loop are common in land, marine, and airborne geophysical exploration. Most of these horizontal magnetic dipole (HMD) systems operate in the frequency domain, measuring the time derivative of the induced magnetic fields, and therefore a majority of studies have focused on this subset of field measurements. We examine the time-domain electromagnetic response of a HMD including the electric fields and corresponding smoke rings produced in a conductive half-space. Cases of a dipole at the surface and buried within the earth are considered. Results indicate that when the current in the transmitter is rapidly switched off, a single smoke ring is produced within the plane of the vertical transmitter loop, which is then distorted by the air-earth interface. In this situation, the circular smoke ring, which would normally diffuse symmetrically away from the source in a whole space, is approximately transformed into an ellipse, with a vertical major axis at an early time and a horizontal major axis at a late time. As measured from the location of the transmitter, the depth of investigation and lateral footprint of such a system increases with burial depth. It is also observed that the electric field measured in the direction of the magnetic dipole only contains a secondary response related to the charge accumulation on any horizontal conductivity boundaries because the primary field is always absent. This field component can be expressed analytically in terms of a static and time-varying field, the latter term adding spatial complexity to the total horizontal electric field at the earth surface at early times. Applications of this theoretical study include the design of time-domain induction-logging tools, crossborehole electromagnetic surveys, underground mine expansion work, mine rescue procedures, and novel marine electromagnetic experiments.


2021 ◽  
Vol 36 (3) ◽  
pp. 245-251
Author(s):  
Jun Li ◽  
Huaguang Bao ◽  
Dazhi Ding

In order to evaluate scattering from hypersonic vehicles covered with the plasma efficiently, time domain volume shooting and bouncing rays (TDVSBR) is first introduced in this paper. The new method is applied to solve the transient electromagnetic scattering from complex targets, which combines with non-homogeneous dielectric and perfect electric conducting (PEC) bodies. To simplify the problem, objects are discretized into tetrahedrons with different electromagnetic parameters. Then the reflection and transmission coefficients can be obtained by using theory of electromagnetic waves propagation in lossy medium. After that, we simulate the reflection and transmission of rays in different media. At last, the scattered fields or radiation are solved by the last exiting ray from the target. Compared with frequency-domain methods, time-domain methods can obtain the wideband RCS efficiently. Several numerical results are given to demonstrate the high efficiency and accuracy of this proposed scheme.


Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Qingtao Sun ◽  
Runren Zhang ◽  
Yunyun Hu

To facilitate the modeling of time-domain controlled-source electromagnetic survey, we propose an efficient finite-element method with weighted Laguerre polynomials, which shows a much lower computational complexity than conventional time integration methods. The proposed method allows sampling the field at arbitrary time steps and also its accuracy is determined by the number of polynomials, instead of the time sampling interval. Analysis is given regarding the optimization of the polynomial number to be used and the criterion of selecting the time scale factor. Two numerical examples in marine and land survey environments are included to demonstrate the superiority of the proposed method over the existing backward Euler time integration method. The proposed method is expected to facilitate the modeling of transient electromagnetic surveys in the geophysical regime.


Sign in / Sign up

Export Citation Format

Share Document