Closed-form design and efficient implementation of generalized maximally flat half-band FIR filters

2000 ◽  
Vol 7 (6) ◽  
pp. 149-151 ◽  
Author(s):  
Soo-Chang Pei ◽  
Peng-Hua Wang
Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 553
Author(s):  
Daewon Chung ◽  
Woon Cho ◽  
Inyeob Jeong ◽  
Joonhyeon Jeon

Maximally-flat (MAXFLAT) finite impulse response (FIR) filters often face a problem of the cutoff-frequency error due to approximation of the desired frequency response by some closed-form solution. So far, there have been plenty of efforts to design such a filter with an arbitrarily specified cut off-frequency, but this filter type requires extensive computation and is not MAXFLAT anymore. Thus, a computationally efficient and effective design is needed for highly accurate filters with desired frequency characteristics. This paper describes a new method for designing cutoff-frequency-fixing FIR filters through the cutoff-frequency error compensation of MAXFLAT FIR filters. The proposed method provides a closed-form Chebyshev polynomial containing a cutoff-error compensation function, which can characterize the “cutoff-error-free” filters in terms of the degree of flatness for a given order of filter and cut off-frequency. This method also allows a computationally efficient and accurate formula to directly determine the degree of flatness, so that this filter type has a flat magnitude characteristic both in the passband and the stopband. The remarkable effectiveness of the proposed method in design efficiency and accuracy is clearly demonstrated through various examples, indicating that the cutoff-fixing filters exhibit amplitude distortion error of less than 10−14 and no cut off-frequency error. This new approach is shown to provide significant advantages over the previous works in design flexibility and accuracy.


Sign in / Sign up

Export Citation Format

Share Document