finite impulse response
Recently Published Documents


TOTAL DOCUMENTS

880
(FIVE YEARS 257)

H-INDEX

31
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 578
Author(s):  
Jung Min Pak

Automotive radars, which are used for preceding vehicle tracking, have attracted significant attention in recent years. However, the false measurements that occur in cluttered roadways hinders the tracking process in vehicles; thus, it is essential to develop automotive radar systems that are robust against false measurements. This study proposed a novel track formation algorithm to initialize the preceding vehicle tracking in automotive radar systems. The proposed algorithm is based on finite impulse response filtering, and exhibited significantly higher accuracy in highly cluttered environments than a conventional track formation algorithm. The excellent performance of the proposed algorithm was demonstrated using extensive simulations under real conditions.


Author(s):  
Nicholas Assimakis ◽  
Maria Adam ◽  
Christos Massouros

In this paper a distributed implementation for the periodic steady state Kalman filter is proposed. The distributed algorithm has parallel structure and can be implemented using processors in parallel without idle time. The number of processors is equal to the model period. The resulting speedup is also derived. The Finite Impulse Response (FIR) form of the periodic steady state Kalman filter is derived.


Author(s):  
Robert Ward ◽  
Burak Sencer ◽  
Bryn Jones ◽  
Erdem Ozturk

Abstract This paper presents a novel real-time interpolation technique for 5-axis machine tools to attain higher speedand accuracy. To realize computationally efficient real-time interpolation of 6DOF tool motion, a joint workpiece-machine coordinate system interpolation scheme is proposed. Cartesian motion of the tool centre point (TCP) isinterpolated in the workpiece coordinate system (WCS), whereas tool orientation is interpolated in the machinecoordinate system (MCS) based on the finite impulse response (FIR) filtering. Such approach provides several ad-vantages: i) it eliminates the need for complex real-time spherical interpolation techniques, ii) facilitates efficientuse of slower rotary drive kinematics to compensate for the dynamic mismatch between Cartesian and rotary axesand achieve higher tool acceleration, iii) mitigates feed fluctuations while interpolating near kinematic singulari-ties. To take advantage of such benefits and realize accurate joint WCS-MCS interpolation scheme, tool orientationinterpolation errors are analysed. A novel approach is developed to adaptively discretize long linear tool movesand confine interpolation errors within user set tolerances. Synchronization errors between TCP and tool orienta-tion are also characterized, and peak synchronization error level is determined to guide the interpolation parameterselection. Finally, blending errors during non-stop continuous interpolation of linear toolpaths are modelled andconfined. Advantages of the proposed interpolation scheme are demonstrated through simulation studies and vali-dated experimentally. Overall, proposed technique can improve cycle times up to 10% while providing smooth and accurate non-stop real-time interpolation of tool motion in 5-axis machining.


Author(s):  
A. Rajani

Abstract: The electrical activity of the heart is test with an electrocardiogram (ECG). The fundamental information for the taking decision about various types of heart diseases identified by electrocardiogram. There have been numerous attempts over decades to extract the characteristics of the heartbeat through ECG records with high accuracy and efficiency using a variety of strategies and techniques. In this paper a novel scheme is acquainted, the problem is solved by isolated time space using q-lag unbiased finite impulse response (UFIR), then the received time changing of optimal average horizon for the shape of the ECG signal. A complete statistical analysis is furnished by normalized histogram and statistical classifiers, P wave features extraction based on the detected fiducial points is deliberated. In this concept by utilizing QRS detection, morphological top-bottom hat transformation and notch filters is ameliorated PSNR and latency constraints, furnishes high accuracy and reduced elapsed time. Keywords: Electrocardiogram (ECG) denoising, unbiased finite impulse response (UFIR) filtering, P wave feature extraction, normalized histogram, QRS complex detection.


2021 ◽  
Vol 25 (4) ◽  
Author(s):  
Predrag Petrovic

A systematic analytical procedure for simultaneous estimation of the fundamental frequency, the amplitudes and phases of harmonic waves was proposed in this paper. In order to reduce complexity in the calculation of unknown parameters, a completely new reduced analytical expression is derived, which enabled fast and precise estimation with a small numerical error. Individual sinusoidal components stand out from the input complex-harmonic signal with the filter with a finite-impulse response (FIR) comb filters. The algorithm that is proposed in the operation is based on the application of partial derivate of the processed and filtered input signal, after which it is performed weighted estimation procedure to better estimate the values size of the fundamental frequency, amplitude and the multi-sinusoid signal phase. The proposed algorithm can be used in the signal reconstruction and estimation procedures, spectral processing, in procedures for the identification of the system that is observed, as well as other important signal processing areas. Through the simulation check, the effectiveness of the proposed algorithm was assessed, which confirmed its high performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Wacker ◽  
Anna Jöud ◽  
Bo Bernhardsson ◽  
Philip Gerlee ◽  
Fredrik Gustafsson ◽  
...  

AbstractWe demonstrate that finite impulse response (FIR) models can be applied to analyze the time evolution of an epidemic with its impact on deaths and healthcare strain. Using time series data for COVID-19-related cases, ICU admissions and deaths from Sweden, the FIR model gives a consistent epidemiological trajectory for a simple delta filter function. This results in a consistent scaling between the time series if appropriate time delays are applied and allows the reconstruction of cases for times before July 2020, when RT-PCR testing was not widely available. Combined with randomized RT-PCR study results, we utilize this approach to estimate the total number of infections in Sweden, and the corresponding infection-to-fatality ratio (IFR), infection-to-case ratio (ICR), and infection-to-ICU admission ratio (IIAR). Our values for IFR, ICR and IIAR are essentially constant over large parts of 2020 in contrast with claims of healthcare adaptation or mutated virus variants importantly affecting these ratios. We observe a diminished IFR in late summer 2020 as well as a strong decline during 2021, following the launch of a nation-wide vaccination program. The total number of infections during 2020 is estimated to 1.3 million, indicating that Sweden was far from herd immunity.


Author(s):  
Ola N. Kadhim ◽  
Kifah T. Khudhair ◽  
Fallah H. Najjar ◽  
Hassan M. Al-Jawahry

In this search, an important methodology has been presented for communicated information rectification utilizing advanced channel windowing approach. The modern data communication technologies are ensured with numerous challenges because of their unpredictability and arrangement. Various digital transmission topologies in 4G can't fulfill the requirements in future arrangements, therefore, alternative multicarrier modulation (MCM) becoming the nominated approaches among all other data transmission techniques. Wherein prototype filter configuration is a fundamental system based on which the synthesis and analysis filters are derived. This paper presents a complete review on the ongoing advances of finite impulse response (FIR) filter plan procedures in MCM based correspondence frameworks. Initially, the essential issues are tried, taking into consideration the presentation of available data signal applicants and the FIR filter design concept. At that point the techniques for FIR filter configuration are summed up in subtleties and are center around the accompanying three group’s recurrence testing strategies, windowing based strategies and advancement-based techniques. At last, the exhibitions of different FIR structure strategies are assessed and measured by power spectral density (PSD) and bit error rate (BER), and variable MCM plots as well as their potential prototype filters are examined.


Sign in / Sign up

Export Citation Format

Share Document