2011 ◽  
Vol 84-85 ◽  
pp. 373-377
Author(s):  
Wei Zhang Wang

The present solutions of well cementing are mostly designed by designers’ experience and calculation which can not predict the engineering quality after application of the designs. Meanwhile some questions in the designs can not be solved before construction. On the basis of detailed evaluation of every influential factor according to construction and environmental conditions, this article provides cementing fuzzy neural network model by means of 2nsoftEditor neural network modeling tools, and the stable software systems with the combination of artificial neural network and fuzzy logic rules are expected to improve the credibility of cementing quality prediction. Construction practice shows that cementing quality prediction with application of fuzzy neural network system before cementing can greatly reduce the cementing costs and improve the cementing success ratio.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


Sign in / Sign up

Export Citation Format

Share Document