Model reduction for switched linear parameter varying systems with average dwell time

Author(s):  
Lixian Zhang ◽  
Peng Shi ◽  
Michael Basin
Author(s):  
Shenquan Wang ◽  
Wenchengyu Ji ◽  
Yulian Jiang ◽  
Keping Liu

Considering two types of delays including both time-varying delay and parameter varying delay in continuous switched linear parameter varying systems, the problem of [Formula: see text] filtering under average dwell time switching is illustrated. The [Formula: see text] filter depending on the linear time-varying parameter [Formula: see text] (mode-dependent parameterized filter) is designed at first. Then, based on multiple Lyapunov function and an improved reciprocally convex inequality, the corresponding existence sufficient conditions for the filter could ensure the obtained filter error system exponentially stable with a guaranteed [Formula: see text] performance in the form of linear matrix inequalities. In addition, the designed filter gains under allowed switching signals are computed via the proposed convex optimal algorithm. In the end, two numerical examples show the effectiveness of the results in this work.


Author(s):  
Dong Yang ◽  
Guangdeng Zong ◽  
Jun Zhao

This article discusses the issue of H∞ fault-tolerant control for switched linear parameter-varying systems with actuator failures using the multiple discretized parameter-dependent Lyapunov functions method. A key point of this work is to construct the multiple discretized parameter-dependent Lyapunov functions, which provide an effective tool for avoiding the Zeno behavior generated by the parameter and state-dependent switching approach. This is not a simple extension of traditional multiple Lyapunov functions because of the introduction of external parameter and dwell time. First, a switching strategy depending on the parameter, state and dwell time is proposed, which gets rid of the assumption of finite number of switchings on any finite time. Then, the parameter-dependent controller is designed which, together with the parameter and state-dependent switching law with dwell time, can guarantee the [Formula: see text] performance of the closed-loop switched linear parameter-varying system for all admissible actuator failures. Finally, a turbofan engine example is given to demonstrate the applicability of the main results.


Sign in / Sign up

Export Citation Format

Share Document