A flexible, reaction-wheel-driven fish robot: Flow sensing and flow-relative control

Author(s):  
Feitian Zhang ◽  
Patrick Washington ◽  
Derek A. Paley
Author(s):  
Feitian Zhang ◽  
Francis D. Lagor ◽  
Derrick Yeo ◽  
Patrick Washington ◽  
Derek A. Paley

Flexibility plays an important role in fish behaviors by enabling high maneuverability for predator avoidance and swimming in turbulence. In this paper, we present a novel, flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is made of a soft, hyperelastic material that provides flexibility. The fish robot features a Joukowski-foil shape conducive to modeling the fluid analytically. A quasisteady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot are presented, and a reduced model for one-dimensional swimming is derived. A recursive Bayesian filter assimilates pressure measurements for estimating the flow speed, angle of attack, and foil camber. Simulation and experimental results are presented to show the effectiveness of the flow estimation algorithm.


2015 ◽  
Vol 10 (6) ◽  
pp. 065001 ◽  
Author(s):  
Feitian Zhang ◽  
Francis D Lagor ◽  
Derrick Yeo ◽  
Patrick Washington ◽  
Derek A Paley

Author(s):  
Martin Worm ◽  
Tim Landgraf ◽  
Gerhard von der Emde

AbstractAfrican weakly electric fish communicate at night by constantly emitting and perceiving brief electrical signals (electric organ discharges, EOD) at variable inter-discharge intervals (IDI). While the waveform of single EODs contains information about the sender’s identity, the variable IDI patterns convey information about its current motivational and behavioural state. Pairs of fish can synchronize their EODs to each other via echo responses, and we have previously formulated a ‘social attention hypothesis’ stating that fish use echo responses to address specific individuals and establish brief dyadic communication frameworks within a group. Here, we employed a mobile fish robot to investigate the behaviour of small groups of up to four Mormyrus rume and characterized the social situations during which synchronizations occurred. An EOD-emitting robot reliably evoked social following behaviour, which was strongest in smaller groups and declined with increasing group size. We did not find significant differences in motor behaviour of M. rume with either an interactive playback (echo response) or a random control playback by the robot. Still, the robot reliably elicited mutual synchronizations with other fish. Synchronizations mostly occurred during relatively close social interactions, usually when the fish that initiated synchronization approached either the robot or another fish from a distance. The results support our social attention hypothesis and suggest that electric signal synchronization might facilitate the exchange of social information during a wide range of social behaviours from aggressive territorial displays to shoaling and even cooperative hunting in some mormyrids.


1959 ◽  
Vol 4 (3) ◽  
pp. 139-149 ◽  
Author(s):  
R. Froelich ◽  
H. Papapoff

Sign in / Sign up

Export Citation Format

Share Document