flow sensing
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 60)

H-INDEX

31
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 258
Author(s):  
Chongdeuk Lee

To provide high-quality streaming services in device-to-device (D2D) communications, performance parameters such as encoding rate, decoding rate, and flow rate should be detected and monitored. The proposed algorithm provides a method to detect time streaming for traffic flows in D2D communications, and a sequence to detect rate imbalance. This paper proposes a new FS-CDA (flow sensing-based congestion detecting algorithm) to prevent high congestion rates and assist an optimized D2D streaming service in 5G-based wireless mobile networks. The proposed algorithm detects and controls flow imbalance for streaming segments during D2D communications, and it includes operations such as transmission rate monitoring, rate adjustment functions, and underflow and overflow sensing for these operations. The paper aims to effectively control traffic flow rates caused by adjacent channel bandwidth, high bit rate error, and heterogeneous radio interference, and to enhance the performance of D2D streaming services by performing such operations. The proposed algorithm for D2D streaming services is measured by deriving the individual weight of certain versions of a streaming flow. Based on the given operations, the simulation results indicated that the proposed algorithm has better performance with respect to average congestion control ratio, PSNR, and average throughput than other methods.


Author(s):  
Geng Liu ◽  
Weili Jiang ◽  
Xudong Zheng ◽  
Qian Xue

Abstract Phocid seals detect and track artificial or biogenic hydrodynamic trails based on mechanical signals of their whisker arrays. In this paper, we investigated the correlations between flow structures and whisker array signals using a simplified numerical model of fluid-structure interaction (FSI). Three-dimensional (3D) wakes of moving paddles in three different shapes (rectangular plate, undulated plate, and circular cylinder) were simulated using an in-house immersed-boundary-method-based computational fluid dynamics (CFD) solver. One-way FSI was then simulated to obtain the dynamic behavior and root signal of each whisker in the two whisker arrays on a seal head in each wake. The position, geometry, and material of each whisker were modeled based on the measurements reported in literatures. The correlations between the wake structures and whisker array signals were analyzed. It was found that the patterns of the signals on the whisker arrays can reflect the strength, timing, and moving trajectories of the jets induced by the vortices in the wakes. Specifically, the rectangular plate generates the strongest starting vortex ring as well as the strongest jets, while the undulated plate generates the weakest ones. These flow features are fully reflected by the largest whisker signal magnitude in the rectangular plate sensing and the smallest one in the undulated plate sensing. Moreover, the timing of the signal initiation and the maximum signal agree well with the timing of the jet reaching the arrays and the maximum flow speed, respectively. The correlation coefficient between the moving trajectories of the jet and the movement of the high signal level region in the array was found to be higher than 0.9 in the rectangular plate case. The results provide a physical insight into the mechanisms of seal whisker flow sensing.


AIP Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 105320
Author(s):  
Qian Yang ◽  
Qiao Hu ◽  
Yu Liu ◽  
Yixin Li ◽  
Sihu Li ◽  
...  

2021 ◽  
Vol 81 ◽  
pp. 102046
Author(s):  
Wang Qingqing ◽  
Li Guozhan ◽  
Zhang Dongfei ◽  
Chen Caolang ◽  
Zhang Hongjun

2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Xingwen Zheng ◽  
Amar M. Kamat ◽  
Ming Cao ◽  
Ajay Giri Prakash Kottapalli

Seals are known to use their highly sensitive whiskers to precisely follow the hydrodynamic trail left behind by prey. Studies estimate that a seal can track a herring that is swimming as far as 180 m away, indicating an incredible detection apparatus on a par with the echolocation system of dolphins and porpoises. This remarkable sensing capability is enabled by the unique undulating structural morphology of the whisker that suppresses vortex-induced vibrations (VIVs) and thus increases the signal-to-noise ratio of the flow-sensing whiskers. In other words, the whiskers vibrate minimally owing to the seal's swimming motion, eliminating most of the self-induced noise and making them ultrasensitive to the vortices in the wake of escaping prey. Because of this impressive ability, the seal whisker has attracted much attention in the scientific community, encompassing multiple fields of sensory biology, fluid mechanics, biomimetic flow sensing and soft robotics. This article presents a comprehensive review of the seal whisker literature, covering the behavioural experiments on real seals, VIV suppression capabilities enabled by the undulating geometry, wake vortex-sensing mechanisms, morphology and material properties and finally engineering applications inspired by the shape and functionality of seal whiskers. Promising directions for future research are proposed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Markus Maerker ◽  
Maike Getwan ◽  
Megan E. Dowdle ◽  
Jason C. McSheene ◽  
Vanessa Gonzalez ◽  
...  

AbstractRotating cilia at the vertebrate left-right organizer (LRO) generate an asymmetric leftward flow, which is sensed by cells at the left LRO margin. Ciliary activity of the calcium channel Pkd2 is crucial for flow sensing. How this flow signal is further processed and relayed to the laterality-determining Nodal cascade in the left lateral plate mesoderm (LPM) is largely unknown. We previously showed that flow down-regulates mRNA expression of the Nodal inhibitor Dand5 in left sensory cells. De-repression of the co-expressed Nodal, complexed with the TGFß growth factor Gdf3, drives LPM Nodal cascade induction. Here, we show that post-transcriptional repression of dand5 is a central process in symmetry breaking of Xenopus, zebrafish and mouse. The RNA binding protein Bicc1 was identified as a post-transcriptional regulator of dand5 and gdf3 via their 3′-UTRs. Two distinct Bicc1 functions on dand5 mRNA were observed at pre- and post-flow stages, affecting mRNA stability or flow induced translational inhibition, respectively. To repress dand5, Bicc1 co-operates with Dicer1, placing both proteins in the process of flow sensing. Intriguingly, Bicc1 mediated translational repression of a dand5 3′-UTR mRNA reporter was responsive to pkd2, suggesting that a flow induced Pkd2 signal triggers Bicc1 mediated dand5 inhibition during symmetry breakage.


Sign in / Sign up

Export Citation Format

Share Document