scholarly journals Dynamic Trustworthiness Overlapping Community Discovery in Mobile Internet of Things

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 74579-74597 ◽  
Author(s):  
Jirui Li ◽  
Xiaoyong Li ◽  
Yunquan Gao ◽  
Jie Yuan ◽  
Binxing Fang
Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
Yan Li ◽  
Jing He ◽  
Youxi Wu ◽  
Rongjie Lv

The real world can be characterized as a complex network sto in symmetric matrix. Community discovery (or community detection) can effectively reveal the common features of network groups. The communities are overlapping since, in fact, one thing often belongs to multiple categories. Hence, overlapping community discovery has become a new research hotspot. Since the results of the existing community discovery algorithms are not robust enough, this paper proposes an effective algorithm, named Two Expansions of Seeds (TES). TES adopts the topological feature of network nodes to find the local maximum nodes as the seeds which are based on the gravitational degree, which makes the community discovery robust. Then, the seeds are expanded by the greedy strategy based on the fitness function, and the community cleaning strategy is employed to avoid the nodes with negative fitness so as to improve the accuracy of community discovery. After that, the gravitational degree is used to expand the communities for the second time. Thus, all nodes in the network belong to at least one community. Finally, we calculate the distance between the communities and merge similar communities to obtain a less- undant community structure. Experimental results demonstrate that our algorithm outperforms other state-of-the-art algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian Zhou ◽  
Xiaotian Gong ◽  
Lijuan Sun ◽  
Yong Xie ◽  
Xiaoyong Yan

Satellite Internet of Things (S-IoT), which integrates satellite networks with IoT, is a new mobile Internet to provide services for social networks. However, affected by the dynamic changes of topology structure and node status, the efficient and secure forwarding of data packets in S-IoT is challenging. In view of the abovementioned problem, this paper proposes an adaptive routing strategy based on improved double Q-learning for S-IoT. First, the whole S-IoT is regarded as a reinforcement learning environment, and satellite nodes and ground nodes in S-IoT are both regarded as intelligent agents. Each node in the S-IoT maintains two Q tables, which are used for selecting the forwarding node and for evaluating the forwarding value, respectively. In addition, the next hop node of data packets is determined depending on the mixed Q value. Second, in order to optimize the Q value, this paper makes improvements on the mixed Q value, the reward value, and the discount factor, respectively, based on the congestion degree, the hop count, and the node status. Finally, we perform extensive simulations to evaluate the performance of this adaptive routing strategy in terms of delivery rate, average delay, and overhead ratio. Evaluation results demonstrate that the proposed strategy can achieve more efficient and secure routing in the highly dynamic environment compared with the state-of-the-art strategies.


Sign in / Sign up

Export Citation Format

Share Document