scholarly journals A Framework for Knowing Who is Doing What in Aerial Surveillance Videos

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 93315-93325 ◽  
Author(s):  
Fan Yang ◽  
Sakriani Sakti ◽  
Yang Wu ◽  
Satoshi Nakamura
Author(s):  
Holger Meuel ◽  
Marco Munderloh ◽  
Matthias Reso ◽  
Jörn Ostermann

For the transmission of aerial surveillance videos taken from unmanned aerial vehicles (UAVs), region of interest (ROI)-based coding systems are of growing interest in order to cope with the limited channel capacities available. We present a fully automatic detection and coding system which is capable of transmitting high-resolution aerial surveillance videos at very low bit rates. Our coding system is based on the transmission of ROI areas only. We assume two different kinds of ROIs: in order to limit the transmission bit rate while simultaneously retaining a high-quality view of the ground, we only transmit new emerging areas (ROI-NA) for each frame instead of the entire frame. At the decoder side, the surface of the earth is reconstructed from transmitted ROI-NA by means of global motion compensation (GMC). In order to retain the movement of moving objects not conforming with the motion of the ground (like moving cars and their previously occluded ground), we additionally consider regions containing such objects as interesting (ROI-MO). Finally, both ROIs are used as input to an externally controlled video encoder. While we use GMC for the reconstruction of the ground from ROI-NA, we use meshed-based motion compensation in order to generate the pelwise difference in the luminance channel (difference image) between the mesh-based motion compensated and the current input image to detect the ROI-MO. High spots of energy within this difference image are used as seeds to select corresponding superpixels from an independent (temporally consistent) superpixel segmentation of the input image in order to obtain accurate shape information of ROI-MO. For a false positive detection rate (regions falsely classified as containing local motion) of less than 2% we detect more than 97% true positives (correctly detected ROI-MOs) in challenging scenarios. Furthermore, we propose to use a modified high-efficiency video coding (HEVC) video encoder. Retaining full HDTV video resolution at 30 fps and subjectively high quality we achieve bit rates of about 0.6–0.9 Mbit/s, which is a bit rate saving of about 90% compared to an unmodified HEVC encoder.


2018 ◽  
Vol 12 (4) ◽  
pp. 32
Author(s):  
SANTOSH DADI HARIHARA ◽  
KRISHNA MOHAN PILLUTLA GOPALA ◽  
LATHA MAKKENA MADHAVI ◽  
◽  
◽  
...  

2019 ◽  
Vol 9 (10) ◽  
pp. 2003 ◽  
Author(s):  
Tung-Ming Pan ◽  
Kuo-Chin Fan ◽  
Yuan-Kai Wang

Intelligent analysis of surveillance videos over networks requires high recognition accuracy by analyzing good-quality videos that however introduce significant bandwidth requirement. Degraded video quality because of high object dynamics under wireless video transmission induces more critical issues to the success of smart video surveillance. In this paper, an object-based source coding method is proposed to preserve constant quality of video streaming over wireless networks. The inverse relationship between video quality and object dynamics (i.e., decreasing video quality due to the occurrence of large and fast-moving objects) is characterized statistically as a linear model. A regression algorithm that uses robust M-estimator statistics is proposed to construct the linear model with respect to different bitrates. The linear model is applied to predict the bitrate increment required to enhance video quality. A simulated wireless environment is set up to verify the proposed method under different wireless situations. Experiments with real surveillance videos of a variety of object dynamics are conducted to evaluate the performance of the method. Experimental results demonstrate significant improvement of streaming videos relative to both visual and quantitative aspects.


Sign in / Sign up

Export Citation Format

Share Document