scholarly journals A Universal Complex Event Processing Mechanism Based on Edge Computing for Internet of Things Real-Time Monitoring

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 101865-101878 ◽  
Author(s):  
Lina Lan ◽  
Ruisheng Shi ◽  
Bai Wang ◽  
Lei Zhang ◽  
Ning Jiang
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3084 ◽  
Author(s):  
Kyoungsoo Bok ◽  
Daeyun Kim ◽  
Jaesoo Yoo

As a large amount of stream data are generated through sensors over the Internet of Things environment, studies on complex event processing have been conducted to detect information required by users or specific applications in real time. A complex event is made by combining primitive events through a number of operators. However, the existing complex event-processing methods take a long time because they do not consider similarity and redundancy of operators. In this paper, we propose a new complex event-processing method considering similar and redundant operations for stream data from sensors in real time. In the proposed method, a similar operation in common events is converted into a virtual operator, and redundant operations on the same events are converted into a single operator. The event query tree for complex event detection is reconstructed using the converted operators. Through this method, the cost of comparison and inspection of similar and redundant operations is reduced, thereby decreasing the overall processing cost. To prove the superior performance of the proposed method, its performance is evaluated in comparison with existing methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Yu ◽  
Chun Shan ◽  
Jilong Bian ◽  
Xianfei Yang ◽  
Ying Chen ◽  
...  

With the rapid development of Internet of Things (IoT), massive sensor data are being generated by the sensors deployed everywhere at an unprecedented rate. As the number of Internet of Things devices is estimated to grow to 25 billion by 2021, when facing the explicit or implicit anomalies in the real-time sensor data collected from Internet of Things devices, it is necessary to develop an effective and efficient anomaly detection method for IoT devices. Recent advances in the edge computing have significant impacts on the solution of anomaly detection in IoT. In this study, an adaptive graph updating model is first presented, based on which a novel anomaly detection method for edge computing environment is then proposed. At the cloud center, the unknown patterns are classified by a deep leaning model, based on the classification results, the feature graphs are updated periodically, and the classification results are constantly transmitted to each edge node where a cache is employed to keep the newly emerging anomalies or normal patterns temporarily until the edge node receives a newly updated feature graph. Finally, a series of comparison experiments are conducted to demonstrate the effectiveness of the proposed anomaly detection method for edge computing. And the results show that the proposed method can detect the anomalies in the real-time sensor data efficiently and accurately. More than that, the proposed method performs well when there exist newly emerging patterns, no matter they are anomalous or normal.


Sign in / Sign up

Export Citation Format

Share Document