scholarly journals Direct Control Strategy of Real-Time Tracking Power Generation Plan for Wind Power and Battery Energy Storage Combined System

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 147169-147178 ◽  
Author(s):  
Bin Li ◽  
Xinmei Mo ◽  
Biyun Chen
2013 ◽  
Vol 14 (3) ◽  
pp. 255-264 ◽  
Author(s):  
Y Minh Nguyen ◽  
Yong Tae Yoon

Abstract Wind power producers face many regulation costs in deregulated environment, which remarkably lowers the value of wind power in comparison with the conventional sources. One of these costs is associated with the real-time variation of power output and being paid in frequency control market according to the variation band. In this regard, this paper presents a new approach to the scheduling and operation of battery energy storage installed in wind generation system. This approach depends on the statistic data of wind generation and the prediction of frequency control market prices to determine the optimal charging and discharging of batteries in real-time, which ultimately gives the minimum cost of frequency regulation for wind power producers. The optimization problem is formulated as the trade-off between the decrease in regulation payment and the increase in the cost of using battery energy storage. The approach is illustrated in the case study and the results of simulation show its effectiveness.


2021 ◽  
Vol 13 (6) ◽  
pp. 3112
Author(s):  
Mandisi Gwabavu ◽  
Atanda Raji

The intermittent nature of wind power is a major challenge for wind as an energy source. Wind power generation is therefore difficult to plan, manage, sustain, and track during the year due to different weather conditions. The uncertainty of energy loads and power generation from wind energy sources heavily affects the system stability. The battery energy storage system (BESS) plays a fundamental role in controlling and improving the efficiency of renewable energy sources. Stochasticity of wind speed and reliability of the main system components are considered. This paper presents a dynamical control system based on model predictive control (MPC) in real time, to make full use of the flexibility and controllability of energy storage to mitigate problems of wind farm variability and intermittency. The control scheme first plans the expected output, then stochastic optimization is used to optimize grid integrated wind farm BESS output power, develop an optimal operation strategy for BESS, and prevent some unpredictable conditions that may have impacts on the stability of the system. The results show that the proposed method can reduce grid-connected wind power fluctuations, limit system faults, control command for the BESS in the dispatching period, and ensure system stability for grid connection.


Sign in / Sign up

Export Citation Format

Share Document