scholarly journals Demodulation Band Optimization in Envelope Analysis for Fault Diagnosis of Rolling Element Bearings Using a Real-Coded Genetic Algorithm

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 168828-168838 ◽  
Author(s):  
Vigneshwar Kannan ◽  
Huaizhong Li ◽  
Dzung Viet Dao

2015 ◽  
Vol 39 (3) ◽  
pp. 593-603
Author(s):  
Xinghui Zhang ◽  
Jianshe Kang ◽  
Hongzhi Teng ◽  
Jianmin Zhao

Gear and bearing faults are the main causes of gearbox failure. Till now, incipient fault diagnosis of these two components has been a problem and needs further research. In this context, it is found that Lucy–Richardson deconvolution (LRD) proved to be an excellent tool to enhance fault diagnosis in rolling element bearings and gears. LRD’s good identification capabilities of fault frequencies are presented which outperform envelope analysis. This is very critical for early fault diagnosis. The case studies were carried out to evaluate the effectiveness of the proposed method. The results of simulated and experimental studies show that LRD is efficient in alleviating the negative effect of noise and transmission path. The results of simulation and experimental tests demonstrated outperformance of LRD compared to classical envelope analysis for fault diagnosis in rolling element bearings and gears, especially when it is applied to the processing of signals with strong background noise.



2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Wen-An Yang ◽  
Maohua Xiao ◽  
Wei Zhou ◽  
Yu Guo ◽  
Wenhe Liao ◽  
...  

The rolling element bearing is a core component of many systems such as aircraft, train, steamboat, and machine tool, and their failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Due to misoperation, manufacturing deficiencies, or the lack of monitoring and maintenance, it is often found to be the most unreliable component within these systems. Therefore, effective and efficient fault diagnosis of rolling element bearings has an important role in ensuring the continued safe and reliable operation of their host systems. This study presents a trace ratio criterion-based kernel discriminant analysis (TR-KDA) for fault diagnosis of rolling element bearings. The binary immune genetic algorithm (BIGA) is employed to solve the trace ratio problem in TR-KDA. The numerical results obtained using extensive simulation indicate that the proposed TR-KDA using BIGA (called TR-KDA-BIGA) can effectively and efficiently classify different classes of rolling element bearing data, while also providing the capability of real-time visualization that is very useful for the practitioners to monitor the health status of rolling element bearings. Empirical comparisons show that the proposed TR-KDA-BIGA performs better than existing methods in classifying different classes of rolling element bearing data. The proposed TR-KDA-BIGA may be a promising tool for fault diagnosis of rolling element bearings.



2013 ◽  
Vol 332 (8) ◽  
pp. 2081-2097 ◽  
Author(s):  
Feiyun Cong ◽  
Jin Chen ◽  
Guangming Dong ◽  
Michael Pecht


Author(s):  
Yuan Lan ◽  
Xiaohong Han ◽  
Weiwei Zong ◽  
Xiaojian Ding ◽  
Xiaoyan Xiong ◽  
...  

Rolling element bearings constitute the key parts on rotating machinery, and their fault diagnosis is of great importance. In many real bearing fault diagnosis applications, the number of fault data is much less than the number of normal data, i.e. the data are imbalanced. Many traditional diagnosis methods will get low accuracy because they have a natural tendency to favor the majority class by assuming balanced class distribution or equal misclassification cost. To deal with imbalanced data, in this article, a novel two-step fault diagnosis framework is proposed to diagnose the status of rolling element bearings. Our proposed framework consists of two steps for fault diagnosis, where Step 1 makes use of weighted extreme learning machine in an effort to classify the normal or abnormal categories, and Step 2 further diagnoses the underlying anomaly in detail by using preliminary extreme learning machine. In addition, gravitational search algorithm is applied to further extract the significant features and determine the optimal parameters of the weighted extreme learning machine and extreme learning machine classifiers. The effectiveness of our proposed approach is testified on the raw data collected from the rolling element bearing experiments conducted in our Institute, and the empirical results show that our approach is really fast and can achieve the diagnosis accuracies more than 96%.





2011 ◽  
Vol 305 ◽  
pp. 012129 ◽  
Author(s):  
Zhipeng Feng ◽  
Tianjin Wang ◽  
Ming J Zuo ◽  
Fulei Chu ◽  
Shaoze Yan


Sign in / Sign up

Export Citation Format

Share Document