scholarly journals Heterogeneous Information Network Embedding for Mention Recommendation

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 91394-91404
Author(s):  
Feng Yi ◽  
Bo Jiang ◽  
Jianjun Wu
2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


2020 ◽  
Vol 24 (5) ◽  
pp. 1207-1233
Author(s):  
Phu Pham ◽  
Phuc Do

Heterogeneous information network (HIN) are becoming popular across multiple applications in forms of complex large-scaled networked data such as social networks, bibliographic networks, biological networks, etc. Recently, information network embedding (INE) has aroused tremendously interests from researchers due to its effectiveness in information network analysis and mining tasks. From recent views of INE, community is considered as the mesoscopic preserving network’s structure which can be combined with traditional approach of network’s node proximities (microscopic structure preserving) to leverage the quality of network’s representation. Most of contemporary INE models, like as: HIN2Vec, Metapath2Vec, HINE, etc. mainly concentrate on microscopic network structure preserving and ignore the mesoscopic (intra-community) structure of HIN. In this paper, we introduce a novel approach of topic-driven meta-path-based embedding, namely W-Com2Vec (Weighted intra-community to vector). Our proposed W-Com2Vec model enables to capture richer semantic of node representation by applying the meta-path-based community-aware, node proximity preserving and topic similarity evaluation at the same time during the process of network embedding. We demonstrate comprehensive empirical studies on our proposed W-Com2Vec model with several real-world HINs. Experimental results show W-Com2Vec outperforms recent state-of-the-art INE models in solving primitive network analysis and mining tasks.


Sign in / Sign up

Export Citation Format

Share Document