scholarly journals Sharp Bounds of Local Fractional Metric Dimensions of Connected Networks

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 172329-172342
Author(s):  
Muhammad Javaid ◽  
Mohsin Raza ◽  
Poom Kumam ◽  
Jia-Bao Liu
Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1383
Author(s):  
Ali H. Alkhaldi ◽  
Muhammad Kamran Aslam ◽  
Muhammad Javaid ◽  
Abdulaziz Mohammed Alanazi

Metric dimension of networks is a distance based parameter that is used to rectify the distance related problems in robotics, navigation and chemical strata. The fractional metric dimension is the latest developed weighted version of metric dimension and a generalization of the concept of local fractional metric dimension. Computing the fractional metric dimension for all the connected networks is an NP-hard problem. In this note, we find the sharp bounds of the fractional metric dimensions of all the connected networks under certain conditions. Moreover, we have calculated the fractional metric dimension of grid-like networks, called triangular and polaroid grids, with the aid of the aforementioned criteria. Moreover, we analyse the bounded and unboundedness of the fractional metric dimensions of the aforesaid networks with the help of 2D as well as 3D plots.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hassan Zafar ◽  
Muhammad Javaid ◽  
Ebenezer Bonyah

The parameter of distance in the theory of networks plays a key role to study the different structural properties of the understudy networks or graphs such as symmetry, assortative, connectivity, and clustering. For the purpose, with the help of the parameter of distance, various types of metric dimensions have been defined to find the locations of machines (or robots) with respect to the minimum consumption of time, the shortest distance among the destinations, and the lesser number of utilized nodes as places of the objects. In this article, the latest derived form of metric dimension called as LF-metric dimension is studied, and various results for the generalized gear networks are obtained in the form of exact values and sharp bounds under certain conditions. The LF-metric dimension of some particular cases of generalized gear networks (called as generalized wheel networks) is also illustrated. Moreover, the bounded and unboundedness of the LF-metric dimension for all obtained results is also presented.


2015 ◽  
Vol 62 (5) ◽  
pp. 1-40 ◽  
Author(s):  
Seth Pettie
Keyword(s):  

2020 ◽  
Vol 70 (4) ◽  
pp. 849-862
Author(s):  
Shagun Banga ◽  
S. Sivaprasad Kumar

AbstractIn this paper, we use the novel idea of incorporating the recently derived formula for the fourth coefficient of Carathéodory functions, in place of the routine triangle inequality to achieve the sharp bounds of the Hankel determinants H3(1) and H2(3) for the well known class 𝓢𝓛* of starlike functions associated with the right lemniscate of Bernoulli. Apart from that the sharp bound of the Zalcman functional: $\begin{array}{} |a_3^2-a_5| \end{array}$ for the class 𝓢𝓛* is also estimated. Further, a couple of interesting results of 𝓢𝓛* are also discussed.


2020 ◽  
Vol 53 (1) ◽  
pp. 27-37
Author(s):  
Sa’adatul Fitri ◽  
Derek K. Thomas ◽  
Ratno Bagus Edy Wibowo ◽  

AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 < λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\prime} (z){\left(\frac{z}{f(z)}\right)}^{1-\alpha }-1\right|\lt \lambda for 0 < λ ≤ 1. We give sharp bounds for various coefficient problems when f\in { {\mathcal B} }_{1}(\alpha ,\lambda ), thus extending recent work in the case λ = 1.


Sign in / Sign up

Export Citation Format

Share Document