scholarly journals Investigation on Sizing of Voltage Source for a Battery Energy Storage System in Microgrid With Renewable Energy Sources

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 188861-188874 ◽  
Author(s):  
Swaminathan Ganesan ◽  
Umashankar Subramaniam ◽  
Ajit A. Ghodke ◽  
Rajvikram Madurai Elavarasan ◽  
Kannadasan Raju ◽  
...  
2014 ◽  
Vol 1070-1072 ◽  
pp. 449-455 ◽  
Author(s):  
Xin Zhen Feng ◽  
Yi Bin Tao ◽  
Jin Hang Hu ◽  
Qiang Li

With the continuous development of distributed solar, wind power and other renewable energy sources, renewable energy sources which has its own features, such as intermittent and randomness volatility, brings great challenges to the stable operation of power grid. Aiming at meeting the requirement of balancing the fluctuating renewable energy sources of micro grid, this paper proposes the operating control strategies of the zinc bromine flow battery storage. Firstly, the equivalent mathematical model based on the working principle of the zinc bromine flow battery is established; Secondly, a dual closed-loop strategy for the DC/DC converter is proposed, of which the inner loop is peak current control on zinc bromine flow battery side inductance while the outer loop is a switch control by constant active power and trickle current. By resorting the DC/AC grid side converter, the stability of DC bus voltage is maintained; Then, this paper proposes the optimization power control strategies of zinc bromine battery energy storage system as a constraint of state of charge and DC bus voltage; Finally, a 50kW zinc bromine flow battery energy storage system test platform is built, and the charging and discharging characteristics of zinc bromine energy storage system (ZESS) is researched in grid-connected mode, the test results have shown that the proposed power optimization control strategies for zinc bromine energy storage system could smooth renewable energy sources power fluctuation.


Author(s):  
Agus Ramelan ◽  
Feri Adriyanto ◽  
Chico Hermanu Brillianto Apribowo ◽  
Muhammad Hamka Ibrahim ◽  
Irwan Iftadi ◽  
...  

The limited capacity of renewable energy sources in the grid utility is a challenge. Increasing the capacity of renewable energy sources is supported by energy storage in the grid. The Battery Energy Storage System (BESS) allows storing more electricity from New and Renewable Energy (EBT) sources to meet load requirements. This paper designs a techno-economic study of various battery technologies using HOMER (Hybrid Optimization Modeling Software) software simulation. Simulations are made for grid-connected photovoltaic systems in Indonesia. HOMER is used to find the energy cost ($ / kWh) for each type of battery technology and battery system size. The simulation is designed using 1MWp PV component parameters, inverter, energy storage to be compared, residental load, and connected to the grid. The results will help to determine which technology and battery size is more suitable for the system. The findings from this paper resulted in the lowest Levelized Cost Of Energy (LCOE) of $ 1.03 in solar power generation.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2649 ◽  
Author(s):  
Jiashen Teh

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.


Sign in / Sign up

Export Citation Format

Share Document