scholarly journals Enhancing Lexical-Based Approach With External Knowledge for Vietnamese Multiple-Choice Machine Reading Comprehension

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 201404-201417
Author(s):  
Kiet Van Nguyen ◽  
Khiem Vinh Tran ◽  
Son T. Luu ◽  
Anh Gia-Tuan Nguyen ◽  
Ngan Luu-Thuy Nguyen
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Changchang Zeng ◽  
Shaobo Li

Machine reading comprehension (MRC) is a challenging natural language processing (NLP) task. It has a wide application potential in the fields of question answering robots, human-computer interactions in mobile virtual reality systems, etc. Recently, the emergence of pretrained models (PTMs) has brought this research field into a new era, in which the training objective plays a key role. The masked language model (MLM) is a self-supervised training objective widely used in various PTMs. With the development of training objectives, many variants of MLM have been proposed, such as whole word masking, entity masking, phrase masking, and span masking. In different MLMs, the length of the masked tokens is different. Similarly, in different machine reading comprehension tasks, the length of the answer is also different, and the answer is often a word, phrase, or sentence. Thus, in MRC tasks with different answer lengths, whether the length of MLM is related to performance is a question worth studying. If this hypothesis is true, it can guide us on how to pretrain the MLM with a relatively suitable mask length distribution for MRC tasks. In this paper, we try to uncover how much of MLM’s success in the machine reading comprehension tasks comes from the correlation between masking length distribution and answer length in the MRC dataset. In order to address this issue, herein, (1) we propose four MRC tasks with different answer length distributions, namely, the short span extraction task, long span extraction task, short multiple-choice cloze task, and long multiple-choice cloze task; (2) four Chinese MRC datasets are created for these tasks; (3) we also have pretrained four masked language models according to the answer length distributions of these datasets; and (4) ablation experiments are conducted on the datasets to verify our hypothesis. The experimental results demonstrate that our hypothesis is true. On four different machine reading comprehension datasets, the performance of the model with correlation length distribution surpasses the model without correlation.


2020 ◽  
Vol 8 ◽  
pp. 141-155
Author(s):  
Kai Sun ◽  
Dian Yu ◽  
Dong Yu ◽  
Claire Cardie

Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations. We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especiallyon problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text. C3 is available at https://dataset.org/c3/ .


Author(s):  
Zhipeng Chen ◽  
Yiming Cui ◽  
Wentao Ma ◽  
Shijin Wang ◽  
Guoping Hu

Machine Reading Comprehension (MRC) with multiplechoice questions requires the machine to read given passage and select the correct answer among several candidates. In this paper, we propose a novel approach called Convolutional Spatial Attention (CSA) model which can better handle the MRC with multiple-choice questions. The proposed model could fully extract the mutual information among the passage, question, and the candidates, to form the enriched representations. Furthermore, to merge various attention results, we propose to use convolutional operation to dynamically summarize the attention values within the different size of regions. Experimental results show that the proposed model could give substantial improvements over various state-of- the-art systems on both RACE and SemEval-2018 Task11 datasets.


Author(s):  
Min Tang ◽  
Jiaran Cai ◽  
Hankz Hankui Zhuo

Multiple-choice machine reading comprehension is an important and challenging task where the machine is required to select the correct answer from a set of candidate answers given passage and question. Existing approaches either match extracted evidence with candidate answers shallowly or model passage, question and candidate answers with a single paradigm of matching. In this paper, we propose Multi-Matching Network (MMN) which models the semantic relationship among passage, question and candidate answers from multiple different paradigms of matching. In our MMN model, each paradigm is inspired by how human think and designed under a unified compose-match framework. To demonstrate the effectiveness of our model, we evaluate MMN on a large-scale multiple choice machine reading comprehension dataset (i.e. RACE). Empirical results show that our proposed model achieves a significant improvement compared to strong baselines and obtains state-of-the-art results.


2021 ◽  
Vol 11 (17) ◽  
pp. 7945
Author(s):  
Yu Dai ◽  
Yufan Fu ◽  
Lei Yang

To address the problem of poor semantic reasoning of models in multiple-choice Chinese machine reading comprehension (MRC), this paper proposes an MRC model incorporating multi-granularity semantic reasoning. In this work, we firstly encode articles, questions and candidates to extract global reasoning information; secondly, we use multiple convolution kernels of different sizes to convolve and maximize pooling of the BERT-encoded articles, questions and candidates to extract local semantic reasoning information of different granularities; we then fuse the global information with the local multi-granularity information and use it to make an answer selection. The proposed model can combine the learned multi-granularity semantic information for reasoning, solving the problem of poor semantic reasoning ability of the model, and thus can improve the reasoning ability of machine reading comprehension. The experiments show that the proposed model achieves better performance on the C3 dataset than the benchmark model in semantic reasoning, which verifies the effectiveness of the proposed model in semantic reasoning.


2021 ◽  
pp. 357-368
Author(s):  
Dan Luo ◽  
Peng Zhang ◽  
Lu Ma ◽  
Xi Zhu ◽  
Meilin Zhou ◽  
...  

2021 ◽  
Author(s):  
Yiming Ju ◽  
Yuanzhe Zhang ◽  
Zhixing Tian ◽  
Kang Liu ◽  
Xiaohuan Cao ◽  
...  

2021 ◽  
Vol 1955 (1) ◽  
pp. 012072
Author(s):  
Ruiheng Li ◽  
Xuan Zhang ◽  
Chengdong Li ◽  
Zhongju Zheng ◽  
Zihang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document