scholarly journals Design Optimization of Water Distribution Networks through a Novel Differential Evolution

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 16133-16151
Author(s):  
Bilal ◽  
Millie Pant ◽  
Vaclav Snasel
2009 ◽  
Vol 12 (1) ◽  
pp. 66-82 ◽  
Author(s):  
C. R. Suribabu

Water distribution networks are considered as the most important entity in the urban infrastructure system and need huge investment for construction. The inherent problem associated with cost optimisation in the design of water distribution networks is due to the nonlinear relationship between flow and head loss and availability of the discrete nature of pipe sizes. In the last few decades, many researchers focused on several stochastic methods of optimisation algorithms. The present paper is focused on the Differential Evolution algorithm (henceforth referred to as DE) and utilises a similar concept as the genetic algorithm to achieve a goal of optimisation of the specified objective function. A simulation–optimisation model is developed in which the optimization is done by DE. Four well-known benchmark networks were taken for application of the DE algorithm to optimise pipe size and rehabilitation of the water distribution network. The findings of the present study reveal that DE is a good alternative to the genetic algorithm and other heuristic approaches for optimal sizing of water distribution pipes.


Author(s):  
Tiku T. Tanyimboh

Abstract Genetic algorithms have been shown to be highly effective for optimization problems in various disciplines, and binary coding is generally adopted as it is straightforward to implement and lends itself to problems with discrete-valued decision variables. However, a difficulty associated with binary coding is the existence of redundant codes that do not correspond to any element in the finite discrete set that the encoded parameter belongs to. A common technique used to address redundant binary codes is to discard the chromosomes in which they occur. Effective alternatives to the outright removal of redundant codes are lacking in the literature. This article presents illustrative examples based on the problem of optimizing the design of water distribution networks. Two benchmark networks in the literature and two different multi-objective design optimization models were considered. Different fixed mapping schemes gave significantly different solutions in the search space. The main inference from the results is that mapping schemes that improved diversity in the population of solutions achieved better results, which may pave the way for the development of practical and effective mapping schemes.


Sign in / Sign up

Export Citation Format

Share Document