water cycle algorithm
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 98)

H-INDEX

18
(FIVE YEARS 6)

Author(s):  
Vikas Babani ◽  
Charulata ◽  
Pragya ◽  
Prateek ◽  
Rajeev Arya ◽  
...  

Author(s):  
Lionel Alangeh Ngobesing ◽  
Yılmaz Atay

Abstract: In network science and big data, the concept of finding meaningful infrastructures in networks has emerged as a method of finding groups of entities with similar properties within very complex systems. The whole concept is generally based on finding subnetworks which have more properties (links) amongst nodes belonging to the same cluster than nodes in other groups (A concept presented by Girvan and Newman, 2002). Today meaningful infrastructure identification is applied in all types of networks from computer networks, to social networks to biological networks. In this article we will look at how meaningful infrastructure identification is applied in biological networks. This concept is important in biological networks as it helps scientist discover patterns in proteins or drugs which helps in solving many medical mysteries. This article will encompass the different algorithms that are used for meaningful infrastructure identification in biological networks. These include Genetic Algorithm, Differential Evolution, Water Cycle Algorithm (WCA), Walktrap Algorithm, Connect Intensity Iteration Algorithm (CIIA), Firefly algorithms and Overlapping Multiple Label Propagation Algorithm. These al-gorithms are compared with using performance measurement parameters such as the Mod-ularity, Normalized Mutual Information, Functional Enrichment, Recall and Precision, Re-dundancy, Purity and Surprise, which we will also discuss here.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper presents an application of Water Cycle algorithm (WCA) in solving stochastic programming problems. In particular, Linear stochastic fractional programming problems are considered which are solved by WCA and solutions are compared with Particle Swarm Optimization, Differential Evolution, and Whale Optimization Algorithm and the results from literature. The constraints are handled by converting constrained optimization problem into an unconstrained optimization problem using Augmented Lagrangian Method. Further, a fractional stochastic transportation problem is examined as an application of the stochastic fractional programming problem. In terms of efficiency of algorithms and the ability to find optimal solutions, WCA gives highly significant results in comparison with the other metaheuristic algorithms and the quoted results in the literature which demonstrates that WCA algorithm has 100% convergence in all the problems. Moreover, non-parametric hypothesis tests are performed and which indicates that WCA presents better results as compare to the other algorithms.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper presents an application of Water Cycle algorithm (WCA) in solving stochastic programming problems. In particular, Linear stochastic fractional programming problems are considered which are solved by WCA and solutions are compared with Particle Swarm Optimization, Differential Evolution, and Whale Optimization Algorithm and the results from literature. The constraints are handled by converting constrained optimization problem into an unconstrained optimization problem using Augmented Lagrangian Method. Further, a fractional stochastic transportation problem is examined as an application of the stochastic fractional programming problem. In terms of efficiency of algorithms and the ability to find optimal solutions, WCA gives highly significant results in comparison with the other metaheuristic algorithms and the quoted results in the literature which demonstrates that WCA algorithm has 100% convergence in all the problems. Moreover, non-parametric hypothesis tests are performed and which indicates that WCA presents better results as compare to the other algorithms.


2021 ◽  
pp. 1-23
Author(s):  
Muhammad Yaqoob Javed ◽  
Ali Hasan ◽  
Syed Tahir Hussain Rizvi ◽  
Annas Hafeez ◽  
Sajid Sarwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document