scholarly journals Multi-Modal Physiological Data Fusion for Affect Estimation Using Deep Learning

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 21642-21652
Author(s):  
Murtadha D. Hssayeni ◽  
Behnaz Ghoraani
2020 ◽  
Vol 27 (5) ◽  
pp. 359-369 ◽  
Author(s):  
Cheng Shi ◽  
Jiaxing Chen ◽  
Xinyue Kang ◽  
Guiling Zhao ◽  
Xingzhen Lao ◽  
...  

: Protein-related interaction prediction is critical to understanding life processes, biological functions, and mechanisms of drug action. Experimental methods used to determine proteinrelated interactions have always been costly and inefficient. In recent years, advances in biological and medical technology have provided us with explosive biological and physiological data, and deep learning-based algorithms have shown great promise in extracting features and learning patterns from complex data. At present, deep learning in protein research has emerged. In this review, we provide an introductory overview of the deep neural network theory and its unique properties. Mainly focused on the application of this technology in protein-related interactions prediction over the past five years, including protein-protein interactions prediction, protein-RNA\DNA, Protein– drug interactions prediction, and others. Finally, we discuss some of the challenges that deep learning currently faces.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2013
Author(s):  
Edian F. Franco ◽  
Pratip Rana ◽  
Aline Cruz ◽  
Víctor V. Calderón ◽  
Vasco Azevedo ◽  
...  

A heterogeneous disease such as cancer is activated through multiple pathways and different perturbations. Depending upon the activated pathway(s), the survival of the patients varies significantly and shows different efficacy to various drugs. Therefore, cancer subtype detection using genomics level data is a significant research problem. Subtype detection is often a complex problem, and in most cases, needs multi-omics data fusion to achieve accurate subtyping. Different data fusion and subtyping approaches have been proposed over the years, such as kernel-based fusion, matrix factorization, and deep learning autoencoders. In this paper, we compared the performance of different deep learning autoencoders for cancer subtype detection. We performed cancer subtype detection on four different cancer types from The Cancer Genome Atlas (TCGA) datasets using four autoencoder implementations. We also predicted the optimal number of subtypes in a cancer type using the silhouette score and found that the detected subtypes exhibit significant differences in survival profiles. Furthermore, we compared the effect of feature selection and similarity measures for subtype detection. For further evaluation, we used the Glioblastoma multiforme (GBM) dataset and identified the differentially expressed genes in each of the subtypes. The results obtained are consistent with other genomic studies and can be corroborated with the involved pathways and biological functions. Thus, it shows that the results from the autoencoders, obtained through the interaction of different datatypes of cancer, can be used for the prediction and characterization of patient subgroups and survival profiles.


2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Ratna Kumari Vemuri ◽  
Pundru Chandra Shaker Reddy ◽  
B S Puneeth Kumar ◽  
Jayavadivel Ravi ◽  
Sudhir Sharma ◽  
...  

2020 ◽  
pp. 74-80
Author(s):  
Philippe Schweizer ◽  

We would like to show the small distance in neutropsophy applications in sciences and humanities, has both finally consider as a terminal user a human. The pace of data production continues to grow, leading to increased needs for efficient storage and transmission. Indeed, the consumption of this information is preferably made on mobile terminals using connections invoiced to the user and having only reduced storage capacities. Deep learning neural networks have recently exceeded the compression rates of algorithmic techniques for text. We believe that they can also significantly challenge classical methods for both audio and visual data (images and videos). To obtain the best physiological compression, i.e. the highest compression ratio because it comes closest to the specificity of human perception, we propose using a neutrosophical representation of the information for the entire compression-decompression cycle. Such a representation consists for each elementary information to add to it a simple neutrosophical number which informs the neural network about its characteristics relative to compression during this treatment. Such a neutrosophical number is in fact a triplet (t,i,f) representing here the belonging of the element to the three constituent components of information in compression; 1° t = the true significant part to be preserved, 2° i = the inderterminated redundant part or noise to be eliminated in compression and 3° f = the false artifacts being produced in the compression process (to be compensated). The complexity of human perception and the subtle niches of its defects that one seeks to exploit requires a detailed and complex mapping that a neural network can produce better than any other algorithmic solution, and networks with deep learning have proven their ability to produce a detailed boundary surface in classifiers.


Sign in / Sign up

Export Citation Format

Share Document