scholarly journals Dynamic Wavelength Grouping for Quality of Service in Optical Packet Switching

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hafsa Bibi ◽  
Farrukh Zeeshan Khan ◽  
Muneer Ahmad ◽  
Anum Naseem ◽  
Tomasz Holynski ◽  
...  
2017 ◽  
Vol 3 (2) ◽  
pp. 249-254
Author(s):  
Darmawan Darmawan ◽  
Yayan Syafriyatno

Voice over IP (VoIP) adalah solusi komunikasi suara yang murah karena menggunakan jaringan IP dibanding penggunaan telephone analog yang banyak memakan biaya. Dalam penerapannya, VoIP mengalami permasalahan karena menggunakan teknologi packet switching yang mana penggunaannya bersamaan dengan paket data sehingga timbul delay, jitter, dan packet loss.  Pada penelitian ini, algoritma Low Latency Queuing (LLQ) diterapkan pada router cisco. Algoritma LLQ merupakan gabungan dari algoritma Priority Queuing (PQ) dan Class Based Weight Fair Queuing (CBWFQ) sehingga dapat memprioritaskan paket suara disamping paket data. Algoritma LLQ ini diujikan menggunakan codec GSM FR, G722, dan G711 A-law. Hasil pengujian didapatkan nilai parameter yang tidak jauh berbeda dan memenuhi standar ITU-T.G1010. Nilai delay rata - rata terendah yaitu ketika menggunakan codec G722 sebesar 20,019 ms tetapi G722 memiliki rata - rata jitter yang terbesar yaitu 0,986 ms.  Codec dengan jitter rata – rata terkecil adalah G711 A-law sebesar 0,838 ms. Packet loss untuk semua codec yang diujikan adalah 0%.  Throughput pada paket data terbesar saat menggunakan codec GSM FR yaitu 18,139 kbps. Codec yang direkomendasikan adalah G711 A-law karena lebih stabil dari segi jitter dan codec GSM FR cocok diimplementasikan pada jaringan yang memiliki bandwitdh kecil.


2002 ◽  
pp. 106-122
Author(s):  
Luiz A. DaSilva

Today’s networks support applications that deliver text, audio, images and video, often in real time and with a high degree of interactivity, using a common infrastructure. More often than not, traffic is carried over packet-switched networks that treat all data the same, under what is known as best-effort service. Packet switching can achieve very high efficiency through statistical multiplexing of data from numerous sources; however, due to the very nature of packet switching, one should expect fluctuations in throughput, delay, reliability, etc., for any given flow. The greater the statistical multiplexing capabilities, the greater the efficiency and also the greater the variability of achieved performance; in this sense, best-effort service provides maximum efficiency with highly unpredictable service quality. Clearly, not all traffic flows are created equal. Interactive web-based applications tend to be very sensitive to throughput, while real-time voice and video are sensitive to delay and jitter, and traditional data applications such as e-mail and file transfers are fairly insensitive to fluctuations in performance. The concept of quality of service (QoS) has evolved from the realization that in networks that carry heterogeneous traffic it makes sense to treat specific classes of traffic according to their specific needs.


Author(s):  
Luiz A. DaSilva

The original communication networks were designed to carry traffic with homogeneous performance requirements. The telephone network carried real-time voice, with stringent latency bounds, and therefore used circuit-switched technologies with fixed bandwidth allocated to each call. Original data networks were used for electronic mail and file exchange, and therefore employed packet switching and provided best-effort service.


Photonics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 20
Author(s):  
Ruben S. Luis ◽  
Hideaki Furukawa ◽  
Georg Rademacher ◽  
Benjamin J. Puttnam ◽  
Naoya Wada

We demonstrate a spatial division multiplexing (SDM) network testbed composed of three nodes connected via 19-core multi-core fibers. Each node is capable of joint spatial circuit switching and joint packet switching to support 10 Tb/s spatial circuit super channels and 1 Tb/s line rate spatial packet super channels. The performance of the proposed hybrid network is evaluated, showing successful co-existence of both systems in the same network to provide high capacity and high granularity services. Finally, we demonstrate an optical channel selection associated with the quality of service requirements on the SDM network testbed.


2010 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Marko Lacković

The article tackles the problem of quality of service assurance in photonic networks. The idea of multi-servicephotonic network model with the coexistence of optical circuit and packet switching mechanisms and cell communication is used as a basis for service differentiation in the optical domain. Cell loss ratio as a key performance indicator determines the required optical switching mechanism. Service provisioning is performed using call admission control mechanism with real-time cell loss ratio estimation procedure. Service blocking probability calculation utilizes discrete event simulation of service provision and teardown requests applied to core network topology from COST 266 project. Three simulation scenarios are included in the analysis – pure optical packet switching network, and coexistence of optical packet and circuit switching with and without possibility of communication redirection between the switching mechanisms. Simulation scenarios are additionally altered with the cell loss ratio constraint and number of delay lines.


Sign in / Sign up

Export Citation Format

Share Document