A multi-layer artificial intelligence and sensing based affective conversational embodied agent

Author(s):  
Steve DiPaola ◽  
Ozge Nilay Yalcin
Author(s):  
David Casacuberta ◽  
Saray Ayala ◽  
Jordi Vallverdú

After several decades of success in different areas and numerous effective applications, algorithmic Artificial Intelligence has revealed its limitations. If in our quest for artificial intelligence we want to understand natural forms of intelligence, we need to shift/move from platform-free algorithms to embodied and embedded agents. Under the embodied perspective, intelligence is not so much a matter of algorithms, but of the continuous interactions of an embodied agent with the real world. In this paper we adhere to a specific reading of the embodied view usually known as enactivism, to argue that 1) It is a more reasonable model of how the mind really works; 2) It has both theoretical and empirical benefits for Artificial Intelligence and 3) Can be easily implemented in simple robotic sets like Lego Mindstorms (TM). In particular, we will explore the computational role that morphology can play in artificial systems. We will illustrate our ideas presenting several Lego Mindstorms robots where morphology is critical for the robot’s behaviour.


2012 ◽  
pp. 1798-1818 ◽  
Author(s):  
David Casacuberta ◽  
Saray Ayala ◽  
Jordi Vallverdú

After several decades of success in different areas and numerous effective applications, algorithmic Artificial Intelligence has revealed its limitations. If in our quest for artificial intelligence we want to understand natural forms of intelligence, we need to shift/move from platform-free algorithms to embodied and embedded agents. Under the embodied perspective, intelligence is not so much a matter of algorithms, but of the continuous interactions of an embodied agent with the real world. In this paper we adhere to a specific reading of the embodied view usually known as enactivism, to argue that 1) It is a more reasonable model of how the mind really works; 2) It has both theoretical and empirical benefits for Artificial Intelligence and 3) Can be easily implemented in simple robotic sets like Lego Mindstorms (TM). In particular, we will explore the computational role that morphology can play in artificial systems. We will illustrate our ideas presenting several Lego Mindstorms robots where morphology is critical for the robot’s behaviour.


Author(s):  
David L. Poole ◽  
Alan K. Mackworth

Sign in / Sign up

Export Citation Format

Share Document