EM scattering of a target over sea surface based on physical optics

Author(s):  
Hua Zhao ◽  
Li-xin Guo ◽  
Song-hua Liu
2019 ◽  
Vol 11 (1) ◽  
pp. 75 ◽  
Author(s):  
Jinxing Li ◽  
Min Zhang ◽  
Ye Zhao ◽  
Wangqiang Jiang

A full-polarized facet based scattering model (FPFSM) for investigating the electromagnetic (EM) scattering by two-dimensional electrically large sea surfaces with high efficiency at high microwave bands is proposed. For this method, the scattering field over a large sea facet in a diffuse scattering region is numerically deduced according to the Bragg scattering mechanism. In regard to near specular directions, a novel approach is proposed to calculate the scattered field from a sea surface based on the second order small slope approximation (SSA-II), which saves computer memory considerably and is able to analyze the EM scattering by electrically large sea surfaces. The feasibility of this method in evaluating the radar returns from the sea surface is proved by comparing the normalized radar cross sections (NRCS) and the Doppler spectrum with the SSA-II. Then NRCS results in monostatic and bistatic configurations under different polarization states, scattering angles and wind speeds are analyzed as well as the Doppler spectrum at Ka-band. Numerical results show that the FPFSM is a reliable and efficient method to analyze the full-polarized scattering characteristics from electrically large sea surface within a wide frequency range.


Sign in / Sign up

Export Citation Format

Share Document