Spatio-temporal scalable video coding using subband and adaptive field/frame interpolation

Author(s):  
T. Yoshida ◽  
K. Sawada
Author(s):  
Yogananda Patnaik ◽  
Dipti Patra

Video coding is an imperative part of the modern day communication system. Furthermore, it has vital roles in the fields of video streaming, multimedia, video conferencing and much more. Scalable Video Coding (SVC) is an emerging research area, due to its extensive application in most of the multimedia devices as well as public demand. The proposed coding technique is capable of eliminating the Spatio-temporal regularity of a video sequence. In Discrete Bandelet Transform (DBT), the directions are modeled by a three-directional vector field, known as structural flow. Regularity is decided by this flow where the data entropy is low. The wavelet vector decomposition of geometrically ordered data results in a lesser extent of significant coefficients. The directions of geometrical regularity are interpreted with a two-dimensional vector, and the approximation of these directions is found with spline functions. This paper deals with a novel SVC technique by exploiting the DBT. The bandelet coefficients are further encoded by utilizing Set Partitioning in Hierarchical Trees (SPIHT) encoder, followed by global thresholding mechanism. The proposed method is verified with several benchmark datasets using the performance measures which gives enhanced performance. Thus, the experimental results bring out the superiority of the proposed technique over the state-of-arts.


Author(s):  
Dominic Rüfenacht ◽  
Reji Mathew ◽  
David Taubman

We recently proposed a bidirectional hierarchical anchoring (BIHA) of motion fields for highly scalable video coding. The BIHA scheme employs piecewise-smooth motion fields, and uses breakpoints to signal motion discontinuities. In this paper, we show how the fundamental building block of the BIHA scheme can be used to perform bidirectional, occlusion-aware temporal frame interpolation (BOA-TFI). From a “parent” motion field between two reference frames, we use information about motion discontinuities to compose motion fields from both reference frames to the target frame; these then get inverted so that they can be used to predict the target frame. During the motion inversion process, we compute a reliable occlusion mask, which is used to guide the bidirectional motion-compensated prediction of the target frame. The scheme can be used in any state-of-the-art codec, but is most beneficial if used in conjunction with a highly scalable video coder which employs piecewise-smooth motion fields with motion discontinuities. We evaluate the proposed BOA-TFI scheme on a large variety of natural and challenging computer-generated sequences, and our results compare favorably to state-of-the-art TFI methods.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Truong Cong Thang ◽  
Jung Won Kang ◽  
Jeong-Ju Yoo ◽  
Yong Man Ro

Scalable video coding (SVC) is a new video coding format which provides scalability in three-dimensional (spatio-temporal-SNR) space. In this paper, we focus on the adaptation in SNR dimension. Usually, an SVC bitstream may contain multiple spatial layers, and each spatial layer may be enhanced by several FGS layers. To meet a bitrate constraint, the fine-grained scalability (FGS) data of different spatial layers can be truncated in various manners. However, the contributions of FGS layers to the overall/collective video quality are different. In this work, we propose an optimized framework to control the SNR scalability across multiple spatial layers. Our proposed framework has the flexibility in allocating the resource (i.e., bitrate) among spatial layers, where the overall quality is defined as a function of all spatial layers' qualities and can be modified on the fly.


Sign in / Sign up

Export Citation Format

Share Document