Random Error Reduction in Phase Shift Interferometry

Author(s):  
Vladimir I. Guzhov ◽  
Sergey P. Ilinykh
2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Ye Cheng ◽  
Jianhao Hu

In conventional stochastic computation, all the input streams are Bernoulli sequences (BSs), which may result in large random error. To reduce random error and improve computational accuracy, some other sequences have been reported as alternatives to BSs. However, these sequences only apply to the specific stochastic circuits, have difficulties in hardware generation, or have length constraints. To this end, new sequences without these disadvantages should be considered. This paper proposes the random error analysis method for stochastic computation based on autocorrelation sequence (AS), which is more general than the conventional one based on BS. The analysis results show that we can use the proper ASs as input streams of stochastic circuits to reduce random error. On the basis of that conclusion, we propose the random error reduction scheme based on maximal concentrated autocorrelation sequence (MCAS) and BS, both of which are ASs. MCAS and BS are applicable to any combinational stochastic circuit, are easily generated by hardware, and have no length constraints, which avoid the disadvantages of sequences in the previous work. Moreover, we apply the proposed random error reduction scheme into several typical stochastic circuits as case studies. The simulation results confirm the effectiveness of the proposed scheme.


2020 ◽  
Vol 43 ◽  
Author(s):  
Robert Mirski ◽  
Mark H. Bickhard ◽  
David Eck ◽  
Arkadiusz Gut

Abstract There are serious theoretical problems with the free-energy principle model, which are shown in the current article. We discuss the proposed model's inability to account for culturally emergent normativities, and point out the foundational issues that we claim this inability stems from.


Author(s):  
Kenneth H. Downing ◽  
Benjamin M. Siegel

Under the “weak phase object” approximation, the component of the electron wave scattered by an object is phase shifted by π/2 with respect to the unscattered component. This phase shift has been confirmed for thin carbon films by many experiments dealing with image contrast and the contrast transfer theory. There is also an additional phase shift which is a function of the atomic number of the scattering atom. This shift is negligible for light atoms such as carbon, but becomes significant for heavy atoms as used for stains for biological specimens. The light elements are imaged as phase objects, while those atoms scattering with a larger phase shift may be imaged as amplitude objects. There is a great deal of interest in determining the complete object wave, i.e., both the phase and amplitude components of the electron wave leaving the object.


Author(s):  
J. M. Oblak ◽  
B. H. Kear

The “weak-beam” and systematic many-beam techniques are the currently available methods for resolution of closely spaced dislocations or other inhomogeneities imaged through strain contrast. The former is a dark field technique and image intensities are usually very weak. The latter is a bright field technique, but generally use of a high voltage instrument is required. In what follows a bright field method for obtaining enhanced resolution of partial dislocations at 100 KV accelerating potential will be described.A brief discussion of an application will first be given. A study of intermediate temperature creep processes in commercial nickel-base alloys strengthened by the Ll2 Ni3 Al γ precipitate has suggested that partial dislocations such as those labelled 1 and 2 in Fig. 1(a) are in reality composed of two closely spaced a/6 <112> Shockley partials. Stacking fault contrast, when present, tends to obscure resolution of the partials; thus, conditions for resolution must be chosen such that the phase shift at the fault is 0 or a multiple of 2π.


Sign in / Sign up

Export Citation Format

Share Document