CSYM - an iterative solution method for systems of linear equations with complex symmetric coefficient matrix

Author(s):  
M. Bruning ◽  
A. Bunse-Gerstner ◽  
R. Bunger ◽  
J. Reiter ◽  
J. Ritter
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhijun Luo ◽  
Lirong Wang

A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.


2014 ◽  
Vol 26 (5) ◽  
pp. 566-572 ◽  
Author(s):  
Ailan Liu ◽  
◽  
Dingguo Pu ◽  
◽  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/04.jpg"" width=""300"" />Algorithm flow chart</div> We propose a nonmonotone QP-free infeasible method for inequality-constrained nonlinear optimization problems based on a 3-1 piecewise linear NCP function. This nonmonotone QP-free infeasible method is iterative and is based on nonsmooth reformulation of KKT first-order optimality conditions. It does not use a penalty function or a filter in nonmonotone line searches. This algorithm solves only two systems of linear equations with the same nonsingular coefficient matrix, and is implementable and globally convergent without a linear independence constraint qualification or a strict complementarity condition. Preliminary numerical results are presented. </span>


2017 ◽  
Vol 7 (1) ◽  
pp. 143-155 ◽  
Author(s):  
Jing Wang ◽  
Xue-Ping Guo ◽  
Hong-Xiu Zhong

AbstractPreconditioned modified Hermitian and skew-Hermitian splitting method (PMHSS) is an unconditionally convergent iteration method for solving large sparse complex symmetric systems of linear equations, and uses one parameter α. Adding another parameter β, the generalized PMHSS method (GPMHSS) is essentially a twoparameter iteration method. In order to accelerate the GPMHSS method, using an unexpected way, we propose an accelerated GPMHSS method (AGPMHSS) for large complex symmetric linear systems. Numerical experiments show the numerical behavior of our new method.


Sign in / Sign up

Export Citation Format

Share Document