Fractal dimension and frequency response of fractal shaped antennas

Author(s):  
K.J. Vinoy ◽  
J.K. Abraham ◽  
V.K. Varadan
2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Eun-Taik Lee ◽  
Hee-Chang Eun

Fractal-dimension-based signal processing has been extensively applied to various fields for nondestructive testing. The dynamic response signal can be utilized as an analytical tool to evaluate the structural health state without baseline data. The fractal features of the dynamic responses with fractal dimensions (FDs) were investigated using the Higuchi, Katz, and Sevcik methods. The waveform FD proposed by these methods was extracted from the measured frequency response function (FRF) data in the frequency domain. Damage was observed within this region, which resulted in an abrupt change in the curvature of the FD. The effectiveness of the methods was investigated via the results of a steel beam test and a numerical experiment to detect damage.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


1990 ◽  
Vol 26 (9) ◽  
pp. 2243-2244 ◽  
Author(s):  
David G. Tarboton

1990 ◽  
Vol 137 (5) ◽  
pp. 290 ◽  
Author(s):  
J.L. Douce ◽  
L. Balmer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document