steel beam
Recently Published Documents


TOTAL DOCUMENTS

1232
(FIVE YEARS 315)

H-INDEX

35
(FIVE YEARS 8)

2022 ◽  
Vol 172 ◽  
pp. 108876
Author(s):  
Ioannis Papargyriou ◽  
Seyed Mohammad Mojtabaei ◽  
Iman Hajirasouliha ◽  
Jurgen Becque ◽  
Kypros Pilakoutas

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
Dan Gan ◽  
Feng Yan ◽  
Zhiqiang Yang ◽  
Zheng Zhou ◽  
Rui Cheng
Keyword(s):  

2022 ◽  
Vol 254 ◽  
pp. 113835
Author(s):  
Redhwan M. Algobahi ◽  
Mohamed Abdel-Basset Abdo ◽  
Mohamed F.M. Fahmy

2022 ◽  
Vol 189 ◽  
pp. 107099
Author(s):  
Adrien Corman ◽  
Jean-François Demonceau ◽  
Jean-Pierre Jaspart

Vibration ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 59-79
Author(s):  
Anurag Dubey ◽  
Vivien Denis ◽  
Roger Serra

Health surveillance in industries is an important prospect to ensure safety and prevent sudden collapses. Vibration Based Structure Health Monitoring (VBSHM) is being used continuously for structures and machine diagnostics in industry. Changes in natural frequencies are frequently used as an input parameter for VBSHM. In this paper, the Frequency Shift Coefficient (FSC) is used for the assessment of various numerical damaged cases. An FSC-based algorithm is employed in order to estimate the positions and severity of damages using only the natural frequencies of healthy and unknown (damaged) structures. The study focuses on cantilever beams. By considering the minimization of FSC, damage positions and severity are obtained. Artificially damaged cases are assessed by changes in its positions, the number of damages and the size of damages along with the various parts of the cantilever beam. The study is further investigated by considering the effect of uncertainty on natural frequencies (0.1%, 0.2% and 0.3%) in damaged cases, and the algorithm is used to estimate the position and severity of the damage. The outcomes and efficiency of the proposed FSC based method are evaluated in order to locate and quantify damages. The efficiency of the algorithm is demonstrated by locating and quantifying double damages in a real cantilever steel beam using vibration measurements.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jinhe Gao ◽  
Jiahuan Xi ◽  
Yuwen Xu ◽  
Baokui Chen ◽  
Dan Zhao ◽  
...  

To avoid brittle fracture and plastic yielding of steel beam-to-column connections under earthquakes, a new beam-to-column connection of steel structures with all-steel buckling restrained braces (BRBs) is proposed. The all-steel BRB is connected to the steel beam and column members through pins to form a new connection system. Taking the T-shaped beam-to-column connection steel structure as the research object, two structural types with an all-steel BRB installed on one side (S-type) and two sides (D-type) are considered. Theoretical equations of the connection system’s initial stiffness and yield load are derived through the mechanical models. The yield load, main strain distribution, energy dissipation, and stiffness of the connection system are investigated through quasi-static tests to verify the connection system’s seismic performance. The tests revealed that the proposed new connection system is capable of achieving a stable hysteresis behavior. At the end of loading, the beam and column members are not damaged, and the plastic deformation is concentrated in the plastic energy dissipating replaceable BRB, and the beam and column basically remain elastic. The proposed equations approximately estimated the load response of the proposed connection system. The results show that the damage mode of this new connection system under seismic loading is BRB yielding, with an elastic response from the beam-column members.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012028
Author(s):  
Yi Zhao ◽  
Huihui Xu ◽  
Menghui Yan ◽  
Shuai Wang

Abstract To study fire after the mechanical performance of steel girder node special-shaped concrete-filled steel tube column, based on standard ISO - 834 litres of cooling curve, the node temperature field model was established based on finite element software ABAQUS, the compute nodes in the overall uniform temperature field under fire as a result, the reasonable choice of fire after the steel and concrete constitutive model, the temperature field results into the node stress model, considering the factors that influence the whole effect of fire loading in low cycle, the nodes of the finite element model, and contrast analysis of the temperature after the fire of the node and hysteretic performance and ultimate bearing capacity. The results show that the failure modes of special-shaped CFST column-steel beam joints at room temperature and after fire are the same, and the ultimate bearing capacity of the joints after fire decreases significantly by 14.88% compared with that at room temperature.


Sign in / Sign up

Export Citation Format

Share Document