Analysis of complex phased array feeds and their interaction with a cylindrical reflector

Author(s):  
C. Craeye
2017 ◽  
Vol 13 (S337) ◽  
pp. 370-371
Author(s):  
Mateusz Malenta ◽  
Ewan Barr ◽  
Aaron Chippendale ◽  
Xinping Deng ◽  
Daniel George ◽  
...  

AbstractThe challenges of detecting and localising Fast Radio Bursts in real time can be met with the use of Phased Array Feeds. One such system, capable of creating up to 36 simultaneous beams, is currently being commissioned at the Effelsberg radio telescope in Germany following testing at the 64 m Parkes radio telescope. The PAFINDER (Phased Array Feed FRB Finder) pipeline will be used with this receiver to enable real–time single–pulse detection and localisation.


1997 ◽  
Vol 14 (1) ◽  
pp. 96-98 ◽  
Author(s):  
J. Richard Fisher

AbstractMost radio astronomical observations are affected to some degree by man-made and natural interference. There are a few avoidance techniques that can reduce the impact of interference on the survey, but we must make quite significant advances in the understanding of our antennas and receivers and the interference itself before a substantial improvement can be expected. A major increase in the efficiency of future surveys will likely come from phased-array feeds, which have the potential for much closer beam spacings, greater antenna efficiency, and wider fields of view than current independent-feed arrays.


Author(s):  
Wim van Cappellen ◽  
Jan Geralt Bij de Vaate ◽  
Karl Warnick ◽  
Bruce Veidt ◽  
Russell Gough ◽  
...  

Author(s):  
C. W. James ◽  
K. W. Bannister ◽  
J.-P. Macquart ◽  
R. D. Ekers ◽  
S. Oslowski ◽  
...  

AbstractThe Commensal Real-time Australian Square Kilometre Array Pathfinder Fast Transients survey is the first extensive astronomical survey using phased array feeds. Since January 2017, it has been searching for fast radio bursts in fly’s eye mode. Here, we present a calculation of the sensitivity and total exposure of the survey that detected the first 20 of these bursts, using the pulsars B1641-45 and B0833-45 as calibrators. The beamshape, antenna-dependent system noise, and the effects of radio-frequency interference and fluctuations during commissioning are quantified. Effective survey exposures and sensitivities are calculated as a function of the source counts distribution. Statistical ‘stat’ and systematics ‘sys’ effects are treated separately. The implied fast radio burst rate is significantly lower than the 37 sky−1 day−1 calculated using nominal exposures and sensitivities for this same sample by Shannon et al. (2018). At the Euclidean (best-fit) power-law index of −1.5 (−2.2), the rate is $12.7_{-2.2}^{+3.3}$ (sys) ± 3.6 (stat) sky−1 day−1 ( $20.7_{-1.7}^{+2.1}$ (sys) ± 2.8 (stat) sky−1 day−1) above a threshold of 56.6 ± 6.6(sys) Jy ms (40.4 ± 1.2(sys) Jy ms). This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.


Sign in / Sign up

Export Citation Format

Share Document