A multi-slot printed antenna excited with a microstrip line for 4G wireless systems

Author(s):  
Kendrick Q. Henderson ◽  
Saeed I. Latif ◽  
Georgios Y. Lazarou
Author(s):  
François Horlin ◽  
Frederik Petré ◽  
Eduardo Lopez-Estraviz ◽  
Frederik Naessens ◽  
Liesbet Van der Perre

2014 ◽  
Vol 7 (5) ◽  
pp. 551-556 ◽  
Author(s):  
Churng-Jou Tsai ◽  
Bo-Yuan Tsai

In this paper, a novel and compact center-fed dual-band WiFi printed antenna is presented. This antenna is designed using two different arms which correspond to the oscillation points of the dual band, and uses parasitic capacitance and U-shaped microstrip line to match and control the necessary bandwidth. The measured frequency bandwidth of this antenna is 2.3–2.61 GHz (310 MHz, 12.7%) at 2 GHz, and the high-frequency bandwidth is 4.82–5.84 GHz (1020 MHz, 19.1%) at 5 GHz, which meets the requirements for applications in global WiFi communication. This PCB antenna is double-sided, long, and narrow; its size is 7 × 45.9 × 1 mm3; it can be applied to wireless access point; and it has a near-omni-directional radiation pattern. The design, analysis, and measured results of this proposed antenna will be presented.


2020 ◽  
Vol 9 (2) ◽  
pp. 52-59
Author(s):  
H. A. Hammas ◽  
M. F. Hasan ◽  
A. S. A. Jalal

In this paper, a compact multiband printed antenna is proposed to cover four resonant bands in the range of 1-6 GHz. The antenna structure is inspired from that of the classical multi-cavity magnetron resonator. The antenna comprises a slot annular ring structure in the ground plane of an Isola FR4 substrate having Ԑr = 3.5 and thickness h=1.5 mm. The outer circle of the annular ring is loaded with radial arranged small circular slots. On the opposite side of the substrate, the antenna is fed with a 50-Ohm microstrip line. To investigate the effect of different antenna elements on the antenna performance, a parametric study is conducted. The antenna is simulated, fabricated, and measured. The simulated 10 dB return loss bandwidths for the four resonant bands are 35% (1.53–2.11GHz), 14% (2.9–3.34GHz), 12% (4.2–4.75GHz), and 9% (4.94–5.39GHz), respectively. Thus, the antenna is a proper candidate for many in use bands of wireless systems (1.65, 3.14, 4.44, 5.24 GHz), including LTE-FDD, GNSS, GSM-450, W-CDMA/HSPA/k, 802.11a, and IEEE 802.11ac WLAN. The results indicate that the designed antenna has quad-band resonant responses with substantial frequency ratios of f4/f3, f3/f2 and f2/f1. Besides, the antenna offers reasonable radiation characteristics with a gain of 2.5, 4.0, 6.2, and 4.2 dBi, throughout the four resonant bands.


2006 ◽  
Vol 2006 ◽  
pp. 1-25 ◽  
Author(s):  
Yuanbin Guo ◽  
Dennis McCain ◽  
Joseph R. Cavallaro ◽  
Andres Takach
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document