Security-Reliability Analysis of Cognitive Radio Network using Harvest-to-Jam Protocol with Primary Co-Channel Interference

Author(s):  
Pham Minh Quang ◽  
Tran Trung Duy ◽  
Tran Thien Thanh
Author(s):  
Mingming Li ◽  
Jiaru Lin ◽  
Fazhong Liu ◽  
Dongxu Wang ◽  
Li Guo

The authors consider a cognitive radio network in which a set of cognitive users make opportunistic spectrum access to one primary channel by time-division multiplexing technologies. Multiple Input Multiple Output techniques (MIMO) are similarly considered to enhance the stable throughput for cognitive links while they should guarantee co-channel interference constraints to the primary link. Here, two different cases are considered: one is that cognitive radio network is distributed; the other is centrally-controlled that cognitive radio network has a cognitive base station. In the first case, how to choose one fixed cognitive user and power control for each transmission antenna at the cognitive base station are considered to maximize the cognitive link’s stable throughput. In the second case, a scheme to choose a group of cognitive users and a Zero-Forcing method to pre-white co-channel interference to the primary user, are also proposed in order to maximize cognitive base station’s sum-rate. The algorithm can be employed to realize opportunistic spectrum transmission over the wireless fading channels.


Author(s):  
Mingming Li ◽  
Jiaru Lin ◽  
Fazhong Liu ◽  
Dongxu Wang ◽  
Li Guo

The authors consider a cognitive radio network in which a set of cognitive users make opportunistic spectrum access to one primary channel by time-division multiplexing technologies. Multiple Input Multiple Output techniques (MIMO) are similarly considered to enhance the stable throughput for cognitive links while they should guarantee co-channel interference constraints to the primary link. Here, two different cases are considered: one is that cognitive radio network is distributed; the other is centrally-controlled that cognitive radio network has a cognitive base station. In the first case, how to choose one fixed cognitive user and power control for each transmission antenna at the cognitive base station are considered to maximize the cognitive link’s stable throughput. In the second case, a scheme to choose a group of cognitive users and a Zero-Forcing method to pre-white co-channel interference to the primary user, are also proposed in order to maximize cognitive base station’s sum-rate. The algorithm can be employed to realize opportunistic spectrum transmission over the wireless fading channels.


Sign in / Sign up

Export Citation Format

Share Document