Forecasting plug-in electric vehicles load profile using artificial neural networks

Author(s):  
Delshad Panahi ◽  
Sara Deilami ◽  
Mohammad A. S. Masoum ◽  
Syed M. Islam
2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Kevin Förderer ◽  
Hartmut Schmeck

Abstract Communicating the energetic flexibility of distributed energy resources (DERs) is a key requirement for enabling explicit and targeted requests to steer their behavior. The approach presented in this paper allows the generation of load profiles that are likely to be feasible, which means the load profiles can be reproduced by the respective DERs. It also allows to conduct a targeted search for specific load profiles. Aside from load profiles for individual DERs, load profiles for aggregates of multiple DERs can be generated. We evaluate the approach by training and testing artificial neural networks (ANNs) for three configurations of DERs. Even for aggregates of multiple DERs, ratios of feasible load profiles to the total number of generated load profiles of over 99% can be achieved. The trained ANNs act as surrogate models for the represented DERs. Using these models, a demand side manager is able to determine beneficial load profiles. The resulting load profiles can then be used as target schedules which the respective DERs must follow.


2020 ◽  
Vol 10 (16) ◽  
pp. 5567 ◽  
Author(s):  
Kun Qian ◽  
Zhichao Hou ◽  
Dengke Sun

The sound quality (SQ) and sound perception assessments of electric vehicles (EVs) clearly differ from those of conventional internal combustion engine vehicles (ICEVs). Therefore, it is essential to describe and evaluate the SQ of EVs. To evaluate the SQ in EVs, it is necessary to organize evaluators for conducting subjective jury tests, which are time-consuming and labor-intensive. In addition, the evaluation results are subject to the evaluators themselves and other external interferences. With the advancement of machine learning and artificial neural networks (ANNs), this problem can be well solved. This paper outlines a model for SQ estimation in EVs based on a genetic algorithm-optimized back propagation artificial neural network (GA-BP ANN). Moreover, the correlation between the physical-psychoacoustical parameters and the subjective SQ estimations obtained from the jury tests was investigated in this study. It was found that the GA-BP ANN SQ model has many advantages in comparison with the multiple linear regression (MLR) model in terms of precision and generalization. In addition, this method is ready to be applied for rapidly evaluating the SQ in EVs without jury tests, and it can also be of high significance in dealing with the acoustical designs and improvements of EVs in the future.


Sign in / Sign up

Export Citation Format

Share Document