A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning

Author(s):  
Ye Yuan ◽  
Guangxu Xun ◽  
Fenglong Ma ◽  
Qiuling Suo ◽  
Hongfei Xue ◽  
...  
2021 ◽  
Vol 11 (5) ◽  
pp. 668
Author(s):  
Sani Saminu ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Isselmou Abd El Kader ◽  
Adamu Halilu Jabire ◽  
...  

The benefits of early detection and classification of epileptic seizures in analysis, monitoring and diagnosis for the realization and actualization of computer-aided devices and recent internet of medical things (IoMT) devices can never be overemphasized. The success of these applications largely depends on the accuracy of the detection and classification techniques employed. Several methods have been investigated, proposed and developed over the years. This paper investigates various seizure detection algorithms and classifications in the last decade, including conventional techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding. A performance comparison was carried out on the different algorithms investigated, and their advantages and disadvantages were explored. From our survey, much attention has recently been paid to exploring the efficacy of deep learning algorithms in seizure detection and classification, which are employed in other areas such as image processing and classification. Hybrid deep learning has also been explored, with CNN-RNN being the most popular.


2019 ◽  
Vol 23 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Ye Yuan ◽  
Guangxu Xun ◽  
Kebin Jia ◽  
Aidong Zhang

Author(s):  
M. Shamim Hossain ◽  
Syed Umar Amin ◽  
Mansour Alsulaiman ◽  
Ghulam Muhammad

2021 ◽  
Author(s):  
Joseph Caffarini ◽  
Klevest Gjini ◽  
Brinda Sevak ◽  
Roger Waleffe ◽  
Mariel Kalkach-Aparicio ◽  
...  

Abstract In this study we designed two deep neural networks to encode 16 feature latent spaces for early seizure detection in intracranial EEG and compared them to 16 widely used engineered metrics: Epileptogenicity Index (EI), Phase Locked High Gamma (PLHG), Time and Frequency Domain Cho Gaines Distance (TDCG, FDCG), relative band powers, and log absolute band powers (from alpha, beta, theta, delta, gamma, and high gamma bands. The deep learning models were pretrained for seizure identification on the time and frequency domains of one second single channel clips of 127 seizures (from 25 different subjects) using “leave-one-out” (LOO) cross validation. Each neural network extracted unique feature spaces that were used to train a Random Forest Classifier (RFC) for seizure identification and latency tasks. The Gini Importance of each feature was calculated from the pretrained RFC, enabling the most significant features (MSFs) for each task to be identified. The MSFs were extracted from the UPenn and Mayo Clinic's Seizure Detection Challenge to train another RFC for the contest. They obtained an AUC score of 0.93, demonstrating a transferable method to identify interpretable biomarkers for seizure detection.


Sign in / Sign up

Export Citation Format

Share Document