scholarly journals A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal

2021 ◽  
Vol 11 (5) ◽  
pp. 668
Author(s):  
Sani Saminu ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Isselmou Abd El Kader ◽  
Adamu Halilu Jabire ◽  
...  

The benefits of early detection and classification of epileptic seizures in analysis, monitoring and diagnosis for the realization and actualization of computer-aided devices and recent internet of medical things (IoMT) devices can never be overemphasized. The success of these applications largely depends on the accuracy of the detection and classification techniques employed. Several methods have been investigated, proposed and developed over the years. This paper investigates various seizure detection algorithms and classifications in the last decade, including conventional techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding. A performance comparison was carried out on the different algorithms investigated, and their advantages and disadvantages were explored. From our survey, much attention has recently been paid to exploring the efficacy of deep learning algorithms in seizure detection and classification, which are employed in other areas such as image processing and classification. Hybrid deep learning has also been explored, with CNN-RNN being the most popular.

Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Author(s):  
Pranjal Kumar

Human Activity Recognition (HAR) has become a vibrant research field over the last decade, especially because of the spread of electronic devices like mobile phones, smart cell phones, and video cameras in our daily lives. In addition, the progress of deep learning and other algorithms has made it possible for researchers to use HAR in many fields including sports, health, and well-being. HAR is, for example, one of the most promising resources for helping older people with the support of their cognitive and physical function through day-to-day activities. This study focuses on the key role machine learning plays in the development of HAR applications. While numerous HAR surveys and review articles have previously been carried out, the main/overall HAR issue was not taken into account, and these studies concentrate only on specific HAR topics. A detailed review paper covering major HAR topics is therefore essential. This study analyses the most up-to-date studies on HAR in recent years and provides a classification of HAR methodology and demonstrates advantages and disadvantages for each group of methods. This paper finally addresses many problems in the current HAR subject and provides recommendations for potential study.


2019 ◽  
Vol 16 (04) ◽  
pp. 1950016 ◽  
Author(s):  
Duanpo Wu ◽  
Zimeng Wang ◽  
Hong Huang ◽  
Guangsheng Wang ◽  
Junbiao Liu ◽  
...  

Epilepsy is caused by sudden abnormal discharges of neurons in the brain. This paper constructs an automatic seizure detection system, which combines the predicting result of multi-domain feature with the predicting result of spike rate feature to detect the occurrence of epileptic seizures. After segmenting EEG data into 5[Formula: see text]s with 80% overlap epochs, the paper extracts time domain features, frequency domain features and hurst exponents (HE) from each epoch and these features are reduced by linear discriminant analysis (LDA) to be input parameters of the random forest (RF) classifier, which provides classification of the EEG epochs concerning the existence of seizures. In parallel, the paper extracts spikes from EEG data with morphological filter and calculates the spike rate to determine whether there is seizure. Then the results obtained by these two methods are merged as the final detection result. The paper shows that the accuracy (AC), sensitivity (SE), specificity (SP) and the false positive ratio based on event (FPRE) obtained by hybrid method are 98.94%, 76.60%, 98.99% and 2.43 times/h, respectively. Finally, the paper applies the seizure detection method to do seizure warning and recording to help the family member to take care of the patients and the doctor to adjust the antiepileptic drugs (AEDs).


2020 ◽  
Vol 16 (2) ◽  
pp. 1-13
Author(s):  
Alla Fikrat Alwindawi ◽  
Osman Nuri UÇAN ◽  
Ameer Hussein Morad

The seizure epilepsy is risky because it happens randomly and leads to death in some cases. The standard epileptic seizures monitoring system involves video/EEG (electro-encephalography), which bothers the patient, as EEG electrodes are attached to the patient’s head. Seriously, helping or alerting the patient before the seizure is one of the issue that attracts the researchers and designers attention. So that there are spectrums of portable seizure detection systems available in markets which are based on non-EEG signal. The aim of this article is to provide a literature survey for the latest articles that cover many issues in the field of designing portable real-time seizure detection that includes the use of multiple body signals, new algorithm methods, and detection devices that are commercially available. As a result, the reviewing process shows that there are many research articles that have covered wearable seizure detection systems that based on body signals. The more effective monitoring and detection seizure system is the system that uses multi-body signals, is highly comfortable and has low power consumption.


Sign in / Sign up

Export Citation Format

Share Document