Heart Rate Classification Using ECG Signal Processing and Machine Learning Methods

Author(s):  
Maria Papadogiorgaki ◽  
Maria Venianaki ◽  
Paulos Charonyktakis ◽  
Marios Antonakakis ◽  
Ioannis Tsamardinos ◽  
...  
2021 ◽  
Vol 68 ◽  
pp. 102577
Author(s):  
Yang Zhou ◽  
Chaoyang Chen ◽  
Mark Cheng ◽  
Yousef Alshahrani ◽  
Sreten Franovic ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 170
Author(s):  
Muhammad Wasimuddin ◽  
Khaled Elleithy ◽  
Abdelshakour Abuzneid ◽  
Miad Faezipour ◽  
Omar Abuzaghleh

Cardiovascular diseases have been reported to be the leading cause of mortality across the globe. Among such diseases, Myocardial Infarction (MI), also known as “heart attack”, is of main interest among researchers, as its early diagnosis can prevent life threatening cardiac conditions and potentially save human lives. Analyzing the Electrocardiogram (ECG) can provide valuable diagnostic information to detect different types of cardiac arrhythmia. Real-time ECG monitoring systems with advanced machine learning methods provide information about the health status in real-time and have improved user’s experience. However, advanced machine learning methods have put a burden on portable and wearable devices due to their high computing requirements. We present an improved, less complex Convolutional Neural Network (CNN)-based classifier model that identifies multiple arrhythmia types using the two-dimensional image of the ECG wave in real-time. The proposed model is presented as a three-layer ECG signal analysis model that can potentially be adopted in real-time portable and wearable monitoring devices. We have designed, implemented, and simulated the proposed CNN network using Matlab. We also present the hardware implementation of the proposed method to validate its adaptability in real-time wearable systems. The European ST-T database recorded with single lead L3 is used to validate the CNN classifier and achieved an accuracy of 99.23%, outperforming most existing solutions.


2004 ◽  
Vol 52 (8) ◽  
pp. 2152-2152
Author(s):  
M. Feder ◽  
M.A.T. Figueiredo ◽  
A.O. Hero ◽  
C.-H. Lee ◽  
H.-A. Loeliger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document