Big data transfer optimization based on offline knowledge discovery and adaptive sampling

Author(s):  
Md S.Q. Zulkar Nine ◽  
Kemal Guner ◽  
Ziyun Huang ◽  
Xiangyu Wang ◽  
Jinhui Xu ◽  
...  
2020 ◽  
Vol 22 (2) ◽  
pp. 130-144
Author(s):  
Aiqin Hou ◽  
Chase Qishi Wu ◽  
Liudong Zuo ◽  
Xiaoyang Zhang ◽  
Tao Wang ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 2216
Author(s):  
Jiahui Jin ◽  
Qi An ◽  
Wei Zhou ◽  
Jiakai Tang ◽  
Runqun Xiong

Network bandwidth is a scarce resource in big data environments, so data locality is a fundamental problem for data-parallel frameworks such as Hadoop and Spark. This problem is exacerbated in multicore server-based clusters, where multiple tasks running on the same server compete for the server’s network bandwidth. Existing approaches solve this problem by scheduling computational tasks near the input data and considering the server’s free time, data placements, and data transfer costs. However, such approaches usually set identical values for data transfer costs, even though a multicore server’s data transfer cost increases with the number of data-remote tasks. Eventually, this hampers data-processing time, by minimizing it ineffectively. As a solution, we propose DynDL (Dynamic Data Locality), a novel data-locality-aware task-scheduling model that handles dynamic data transfer costs for multicore servers. DynDL offers greater flexibility than existing approaches by using a set of non-decreasing functions to evaluate dynamic data transfer costs. We also propose online and offline algorithms (based on DynDL) that minimize data-processing time and adaptively adjust data locality. Although DynDL is NP-complete (nondeterministic polynomial-complete), we prove that the offline algorithm runs in quadratic time and generates optimal results for DynDL’s specific uses. Using a series of simulations and real-world executions, we show that our algorithms are 30% better than algorithms that do not consider dynamic data transfer costs in terms of data-processing time. Moreover, they can adaptively adjust data localities based on the server’s free time, data placement, and network bandwidth, and schedule tens of thousands of tasks within subseconds or seconds.


2018 ◽  
Vol 50 (4) ◽  
pp. 329-343 ◽  
Author(s):  
Andi Wang ◽  
Xiaochen Xian ◽  
Fugee Tsung ◽  
Kaibo Liu

2018 ◽  
Vol 7 (2.19) ◽  
pp. 52
Author(s):  
J Vivek ◽  
Gandla Maharnisha ◽  
Gandla Roopesh Kumar ◽  
Ch Karun Sagar ◽  
R Arunraj

In  this  paper,  context  awareness  is  a  promising  technology  that  provides  health care services and a niche  area of big data paradigm. The   drift  in  Knowledge  Discovery  from  Data  refers  to  a  set  of  activities  designed  to refine and  extract  new knowledge from complex  datasets.  The   proposed  model  facilitates  a  parallel  mining  of  frequent item sets for Ambient Assisted Living (AAL) System [a.k.a. Health  Care [System]  of  big  data that  reside   inside  a  cloud  environment.  We  extend  a  knowledge  discovery framework for  processing  and  classifying  the  abnormal  conditions of patients having fluctuations in Blood Pressure (BP) and Heart Rate(HR) and storing  this data  sets  called  Big data  into Cloud to access from  anywhere   when  needed.   This   accessed data is used to compare the new data with it, which helps to know the patients health condition.  


Sign in / Sign up

Export Citation Format

Share Document