UAV-VQG: Visual Question Generation Framework on UAV Images

Author(s):  
Argho Sarkar ◽  
Maryam Rahnemoonfar
2014 ◽  
Vol 39 (6) ◽  
pp. 834-845 ◽  
Author(s):  
Fu-Sheng GUO ◽  
Wei GAO
Keyword(s):  

Author(s):  
G Deena ◽  
K Raja ◽  
K Kannan

: In this competing world, education has become part of everyday life. The process of imparting the knowledge to the learner through education is the core idea in the Teaching-Learning Process (TLP). An assessment is one way to identify the learner’s weak spot of the area under discussion. An assessment question has higher preferences in judging the learner's skill. In manual preparation, the questions are not assured in excellence and fairness to assess the learner’s cognitive skill. Question generation is the most important part of the teaching-learning process. It is clearly understood that generating the test question is the toughest part. Methods: Proposed an Automatic Question Generation (AQG) system which automatically generates the assessment questions dynamically from the input file. Objective: The Proposed system is to generate the test questions that are mapped with blooms taxonomy to determine the learner’s cognitive level. The cloze type questions are generated using the tag part-of-speech and random function. Rule-based approaches and Natural Language Processing (NLP) techniques are implemented to generate the procedural question of the lowest blooms cognitive levels. Analysis: The outputs are dynamic in nature to create a different set of questions at each execution. Here, input paragraph is selected from computer science domain and their output efficiency are measured using the precision and recall.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4442
Author(s):  
Zijie Niu ◽  
Juntao Deng ◽  
Xu Zhang ◽  
Jun Zhang ◽  
Shijia Pan ◽  
...  

It is important to obtain accurate information about kiwifruit vines to monitoring their physiological states and undertake precise orchard operations. However, because vines are small and cling to trellises, and have branches laying on the ground, numerous challenges exist in the acquisition of accurate data for kiwifruit vines. In this paper, a kiwifruit canopy distribution prediction model is proposed on the basis of low-altitude unmanned aerial vehicle (UAV) images and deep learning techniques. First, the location of the kiwifruit plants and vine distribution are extracted from high-precision images collected by UAV. The canopy gradient distribution maps with different noise reduction and distribution effects are generated by modifying the threshold and sampling size using the resampling normalization method. The results showed that the accuracies of the vine segmentation using PSPnet, support vector machine, and random forest classification were 71.2%, 85.8%, and 75.26%, respectively. However, the segmentation image obtained using depth semantic segmentation had a higher signal-to-noise ratio and was closer to the real situation. The average intersection over union of the deep semantic segmentation was more than or equal to 80% in distribution maps, whereas, in traditional machine learning, the average intersection was between 20% and 60%. This indicates the proposed model can quickly extract the vine distribution and plant position, and is thus able to perform dynamic monitoring of orchards to provide real-time operation guidance.


2021 ◽  
Vol 443 ◽  
pp. 292-301
Author(s):  
Gangyi Tian ◽  
Jianran Liu ◽  
Wenyuan Yang

Author(s):  
Rohail Syed ◽  
Kevyn Collins-Thompson ◽  
Paul N. Bennett ◽  
Mengqiu Teng ◽  
Shane Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document