scholarly journals Semantic Property Graph for Scalable Knowledge Graph Analytics

Author(s):  
Sumit Purohit ◽  
Nhuy Van ◽  
George Chin
2021 ◽  
Vol 11 (23) ◽  
pp. 11425
Author(s):  
Nikolaos Giarelis ◽  
Nikos Karacapilidis

This paper aims to meaningfully analyse the Horizon 2020 data existing in the CORDIS repository of EU, and accordingly offer evidence and insights to aid organizations in the formulation of consortia that will prepare and submit winning research proposals to forthcoming calls. The analysis is performed on aggregated data concerning 32,090 funded projects, 34,295 organizations participated in them, and 87,067 public deliverables produced. The modelling of data is performed through a knowledge graph-based approach, aiming to semantically capture existing relationships and reveal hidden information. The main contribution of this work lies in the proper utilization and orchestration of keyphrase extraction and named entity recognition models, together with meaningful graph analytics on top of an efficient graph database. The proposed approach enables users to ask complex questions about the interconnection of various entities related to previously funded research projects. A set of representative queries demonstrating our data representation and analysis approach are given at the end of the paper.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jeremy J. Yang ◽  
Christopher R. Gessner ◽  
Joel L. Duerksen ◽  
Daniel Biber ◽  
Jessica L. Binder ◽  
...  

Abstract Background LINCS, "Library of Integrated Network-based Cellular Signatures", and IDG, "Illuminating the Druggable Genome", are both NIH projects and consortia that have generated rich datasets for the study of the molecular basis of human health and disease. LINCS L1000 expression signatures provide unbiased systems/omics experimental evidence. IDG provides compiled and curated knowledge for illumination and prioritization of novel drug target hypotheses. Together, these resources can support a powerful new approach to identifying novel drug targets for complex diseases, such as Parkinson's disease (PD), which continues to inflict severe harm on human health, and resist traditional research approaches. Results Integrating LINCS and IDG, we built the Knowledge Graph Analytics Platform (KGAP) to support an important use case: identification and prioritization of drug target hypotheses for associated diseases. The KGAP approach includes strong semantics interpretable by domain scientists and a robust, high performance implementation of a graph database and related analytical methods. Illustrating the value of our approach, we investigated results from queries relevant to PD. Approved PD drug indications from IDG’s resource DrugCentral were used as starting points for evidence paths exploring chemogenomic space via LINCS expression signatures for associated genes, evaluated as target hypotheses by integration with IDG. The KG-analytic scoring function was validated against a gold standard dataset of genes associated with PD as elucidated, published mechanism-of-action drug targets, also from DrugCentral. IDG's resource TIN-X was used to rank and filter KGAP results for novel PD targets, and one, SYNGR3 (Synaptogyrin-3), was manually investigated further as a case study and plausible new drug target for PD. Conclusions The synergy of LINCS and IDG, via KG methods, empowers graph analytics methods for the investigation of the molecular basis of complex diseases, and specifically for identification and prioritization of novel drug targets. The KGAP approach enables downstream applications via integration with resources similarly aligned with modern KG methodology. The generality of the approach indicates that KGAP is applicable to many disease areas, in addition to PD, the focus of this paper.


Author(s):  
Ramakrishnan Kannan ◽  
Piyush Sao ◽  
Hao Lu ◽  
Drahomira Herrmannova ◽  
Vijay Thakkar ◽  
...  

2021 ◽  
Author(s):  
Jeremy J Yang ◽  
Christopher R Gessner ◽  
Joel L Duerksen ◽  
Daniel Biber ◽  
Jessica L Binder ◽  
...  

AbstractBackgroundLINCS, “Library of Integrated Network-based Cellular Signatures”, and IDG, “Illuminating the Druggable Genome”, are both NIH projects and consortia that have generated rich datasets for the study of the molecular basis of human health and disease. LINCS L1000 expression signatures provide unbiased systems/omics experimental evidence. IDG provides compiled and curated knowledge for illumination and prioritization of novel drug target hypotheses. Together, these resources can support a powerful new approach to identifying novel drug targets for complex diseases, such as Parkinson’s disease (PD), which continues to inflict severe harm on human health, and resist traditional research approaches.ResultsIntegrating LINCS and IDG, we built the Knowledge Graph Analytics Platform (KGAP) to support an important use case: identification and prioritization of drug target hypotheses for associated diseases. The KGAP approach includes strong semantics interpretable by domain scientists and a robust, high performance implementation of a graph database and related analytical methods, using Neo4j. Illustrating the value of our approach, we investigated results from queries relevant to PD. Approved PD drug indications from IDG’s resource DrugCentral were used as starting points for evidence paths exploring chemogenomic space via LINCS expression signatures for associated genes, evaluated as target hypotheses by integration with IDG. The KG-analytic scoring function was validated against a gold standard dataset of genes associated with PD as elucidated, published mechanism-of-action drug targets, also from DrugCentral. IDG’s resource TIN-X was used to rank and filter KGAP results for novel PD targets, and one, SYNGR3 (Synaptogyrin-3), was manually investigated further as a case study and plausible new drug target for PD.ConclusionsThe synergy of LINCS and IDG, via KG methods, empowers graph analytic methods for the investigation of the molecular basis of complex diseases, and specifically for identification and prioritization of novel drug targets. The KGAP approach enables downstream applications via integration with resources similarly aligned with modern KG methodology. The generality of the approach indicates that KGAP is applicable to many disease areas, in addition to PD, the focus of this paper.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Suzanna Schmeelk ◽  
Lixin Tao

Many organizations, to save costs, are movinheg to t Bring Your Own Mobile Device (BYOD) model and adopting applications built by third-parties at an unprecedented rate.  Our research examines software assurance methodologies specifically focusing on security analysis coverage of the program analysis for mobile malware detection, mitigation, and prevention.  This research focuses on secure software development of Android applications by developing knowledge graphs for threats reported by the Open Web Application Security Project (OWASP).  OWASP maintains lists of the top ten security threats to web and mobile applications.  We develop knowledge graphs based on the two most recent top ten threat years and show how the knowledge graph relationships can be discovered in mobile application source code.  We analyze 200+ healthcare applications from GitHub to gain an understanding of their software assurance of their developed software for one of the OWASP top ten moble threats, the threat of “Insecure Data Storage.”  We find that many of the applications are storing personally identifying information (PII) in potentially vulnerable places leaving users exposed to higher risks for the loss of their sensitive data.


2019 ◽  
Author(s):  
Jemmy Wiratama
Keyword(s):  

I'm an Science & Technology enthusiast. I still learn how to build a knowledge graph and how to write a paper.


Sign in / Sign up

Export Citation Format

Share Document